Меню

Устройство галогенного батарейного течеискателя БГТИ 5

Зарядное устройство из компьютерного блока питания

Здравствуйте, уважаемые друзья! Сегодня я расскажу, как переделать компьютерный блок питания в зарядное устройство для автомобильного аккумулятора. Для переделки подойдет блок питания собранный на микросхемах TL494 или KA7500. Другие блоки питания, к сожалению, переделать таким способом не получится.

У каждого блока питания имеется защита от повышения напряжения и короткого замыкания, которую надо отключить.

Чтобы отключить защиту надо перерезать дорожку от Vref +5v которая подходит к 13, 14 и 15 ноге микросхемы. После этого блок питания будет запускаться автоматически при включении в сеть.

Теперь сделаем блок питания регулируемым. Удаляем два резистора R1 28,7 кОм и R2 5,6 кОм. На место резистора R1 ставим переменный резистор на 100 кОм. Напряжение будет плавно регулироваться от 4 до 16 вольт.

Полная схема блока питания на микросхеме TL494, KA7500.

Осталось подключить вольт амперметр по этой схеме и зарядное устройство будет полностью готово.

А теперь я расскажу, как работает готовое устройство, что бы вы могли реально оценить все плюсы этой самоделки. Напряжение этого зарядного устройства плавно регулируется от 4 до 16 вольт.

Это позволяет заряжать шести и двенадцати вольтовые аккумуляторы. С помощью встроенного вольт амперметра легко можно определить напряжение, зарядный ток и окончание процесса заряда аккумуляторной батареи.

Для проверки мощности я решил подключить супер яркую 12-ти вольтовую галогеновую лампу на 55 ватт.

Лампа горит полным накалом на вольтметре 12 вольт и сила тока 8,5 ампер и это еще не предел.

Как заряжать аккумулятор? Красный крокодил плюс, черный минус. Если перепутать полярность или замкнуть, ничего страшного не произойдет, просто перегорит десяти амперный предохранитель.

В данный момент вольтметр показывает напряжение аккумулятора. Эту ручку надо повернуть влево до упора. Включаю питание и плавно поднимаю напряжение до 14,5 вольт. Начальная сила тока должна быть не более 10% от емкости аккумулятора. То есть для 60-го аккумулятора начальный ток заряда будет не более 6-ти ампер, для 55-го соответственно 5,5 ампер. И так далее.

По мере заряда аккумулятора сила тока будет постепенно снижаться, когда сила тока снизится до 150 миллиампер, это будет означать, что аккумулятор полностью зарядился. Время зарядки полностью разряженного аккумулятора составит примерно 24 часа.

Друзья, желаю удачи и хорошего настроения! До встречи в новых статьях!

Источник

Автоматическое зарядное устройство с циклическим и буфферным режимами для герметичных аккумуляторов малой ёмкости

Схема автоматического зарядного устройства

Итак, сама схема автоматического зарядного устройства, в дальнейшем АЗУ.

АЗУ построено на основе классической схемы стабилизированного блока питания, но с добавлением контроля выходного напряжения, зарядного тока и индикации. И защита от переполюсовки, куда же без неё. К слову сказать, без индикации схема была бы гораздо проще. Итак, начнём. Сетевой трансформатор TR1, выпрямитель на диодном мосту D1-D4, накопительный фильтр C1 – это всё понятно. LED1 и R1 – индикатор питания. Далее, стабилизатор (обязательно регулируемый!) VR1 с задающим делителем на R7-R9, выходной фильтр на C3, защитный диод D5, выходной предохранитель – и далее на клеммы аккумулятора.

Алгоритм автоматической работы

Но не все так просто. Аккумулятор нужно заряжать определенным током и определенным напряжением, причем очень желательно не превышать максимальные значения.

Выходное напряжение у нас стабилизирует VR1. Нужно еще ограничить выходной ток. Когда аккумулятор сильно разряжен, его внутреннее сопротивление зарядному току достаточно мало, и если приложить максимальное напряжение, то зарядный ток может превысить не только номинальный, но и максимально допустимый предел. Поэтому зарядный ток нужно также ограничивать «сверху». Как это сделать? Конечно, же – нужно снизить напряжение. Стабилизатор у нас управляемый, и его выходное напряжение регулируется делителем на резисторах. При этом на верхнем плече делителя R7 у нас постоянное опорное напряжение 1.25 В (Помним, да? См. даташит на LM317 или LM1086, параметр VREF.) и нам более естественно будет «работать» с нижним плечом, тем более, что оно упирается в «землю».

Гистерезис в данном случае не нужен, ибо при падении напряжения на выходе автоматически падает и зарядный ток.
В качестве опорного источника напряжения для измерения выступает стабилизатор VR2, он же и питает компараторы.

На этом можно было и закончить, но есть еще одна проблема. Весьма часто можно ошибиться и подключить аккумулятор неправильно – в обратном порядке. Стабилизатор при этом «вылетает» гарантированно. Нужна защита от переполюсовки. Часть защиты на себя берет диод D6, который делает КЗ при неправильном подключении. Одного диода, как правило, недостаточно, он может легко сгореть, поэтому в схему введем дополнительный прерыватель. В нашем случае это самовосстанавливающийся предохранитель, который будет «сгорать» при превышении тока. Подключил аккумулятор наоборот – ток от него идет через диод D6 и предохранитель. «Сгорел» — работает схема в обход – пищалка SP и светодиод LED4.

Назначение остальных деталей. Конденсатор C2 сглаживает резкие импульсы изменения выходного напряжения на нижнем плече делителя стабилизатора, в итоге стабилизатор реагирует только на достаточно крупные изменения. Конденсатор C5 выполняет аналогичную роль фильтра для транзистора.

Диод D5 гарантирует, что ток будет идти только от ЗУ в правильно подключенный аккумулятор, а не наоборот. Резистор R11 выполняет роль дополнительного шунта для измерения зарядного тока на малых величинах, чтобы его мог «поймать» компаратор. Параллельный ему диод D7 шунтирует его при достаточном токе, который дает падение напряжения на R11 больше 0.2 В (для диодов Шоттки).

Цепочка в самом начале схемы на LED1 – индикатор питания. Я применил синий светодиод, а они такие яркие, что светятся буквально от десятых долей миллиампер, поэтому резистор R1 может быть до полусотни килоОм.

Конструкция и детали

Мне очень понравился корпус от подобного же блока питания, который продается у нас на радиорынке, размерами примерно 120х70х60. Видимо, из старых советских запасов, а может быть их штампуют уже сейчас, но по старым же прессформам. В нём есть хорошие щели для вентиляции.

Трансформатор я купил там же, на радиорынке. Был неприятно удивлен ценами. Выходное напряжение – от 14 до 20 В, мощностью не менее 5-7 Вт. Трансформатор подходящего размера и мощности был на 14 В выходного напряжения. В итоге, когда я поставил обычные диоды типа 1N4007 в диодный мост и «обычный» стабилизатор LM317 – на выходе было слишком малое напряжения. Пришлось ставить стабилизатор low-drop типа LD1086 и диоды Шоттки в мост. Если трансформатор будет с выходом более 14 В – мост можно делать из обычных диодов, и стабилизатор применить «стандартный» LM317.

Читайте также:  Зарядное устройство для аккумулятора автомобиля

Кроме того, на диодный мост места на плате не нашлось, поэтому я использовал их в SMD-варианте.
Все остальные диоды – также Шоттки, с малым падением напряжения. Желательно применять с обратным напряжением не менее 30 В.
Все резисторы – любые, кроме R12, который должен быть не менее 0.5 Вт мощностью.
Транзисторы – так называемые «общего применения» (general purpose).

Стабилизатор VR1 – обязательно регулируемый (adjust), с низким падением напряжения (low drop), если выход трансформатора менее 16 В. В случае low drop – LD1086 или LD1084. Если низкое падение не требуется – то LM317. Стабилизатор VR2 – на 5 В, типа 78L05. Компаратор U1 – LM393, с открытым коллектором. Подстроечный резистор P1 – лучше взять многооборотный. Предохранитель F1 – плавкий, на 0.25-0.5 А. F2 – обязательно самовосстанавливающийся, на 0.5-0.8 А. Пищалка SP – на 9-12 В, с встроенным генератором.

Светодиоды – обычные, диффузные. LED1 – синий, у меня он впаивается вплотную в плату, но из-за своего яркого свечения он отлично виден сквозь щели в корпусе.

Выходные провода должны быть достаточно длинные и снабжены «крокодильчиками».

Расчет делителей, шунтов и настройка

Главная формула для шунта R12 = 0.6 * Imax.
Для настройки нам понадобится вольтметр и амперметр.
Включаем только что собранное ЗУ. Должен загореться диод LED1 (синий). Меряем напряжение на выходе. Подстроечным резистором P1 выставляем выходное напряжение буферного режима 13.3-13.6 В.

Подключаем к выходным клеммам резистор сопротивлением порядка 100 Ом (желательно побольше мощностью). Он обеспечит выходной ток порядка 0.14А. Должны загореться зеленый и желтый светодиод. Опять меряем напряжение на выходных клеммах – оно должно быть в пределах цикличного режима заряда аккумулятора (14.3-14.6 В). Если не так – подстраиваем P1, и потом опять меряем напряжение на холостом ходу. Если «холостое» напряжение отличается от буферного – возможно, понадобится подобрать резистор R9.
В принципе и всё. Но для перфекционистов нужно пойти дальше.

Подключаем мощный резистор порядка 10-20 Ом – чтобы ЗУ вышло в режим стабилизации тока. Меряем ток «заряда» амперметром – он должен быть в пределах 0.25 А (Imax). Заодно померяем напряжение на клеммах – оно существенно ниже 13в, это нормально.
Теперь нужно проверить буферный режим. Здесь понадобится резистор около 1 кОм, должен гореть только индикатор LED2, и на выходе быть 13.3-13.6 В.

Теперь можно подключать аккумулятор. Индикаторы зарядки (желтый LED2) и присутствия аккумулятора (зеленый LED3) должны загореться. Проверяем напряжение на клеммах. Через некоторое время, в зависимости от уровня заряда, индикатор зарядки (желтый LED2) погаснет. В принципе, можно аккумулятор отключать. Но если оставить его еще на несколько часов, а то и сутки, то аккумулятор дополнительно подзарядится до 100%, а ток зарядки может снизиться настолько, что погаснет и зеленый светодиод. Это нормально.

Желтый светодиод LED2 нужно выбирать малочувствительный. Иначе он может слегка светиться в буферном режиме от базового тока транзистора VT2.

Пути модернизации

Напомню, данное АЗУ предназначено для зарядки герметичных свинцово-кислотных аккумуляторов емкостью 2.3А*ч. Что нужно сделать, если мы хотим заряжать аккумуляторы побольше?

Прежде всего нужно уточнить напряжения буферного и цикличного режима – они, как правило, написаны на корпусе аккумуляторов. И определить максимальный зарядный ток, исходя из эмпирической формулы Imax = 0.1C, где C – емкость в А*ч. На этот ток (с запасом) нужно и ориентироваться, выбирая трансформатор, диоды и стабилизатор VR1.
Также придется пересчитать шунт R12, чтобы при прохождении максимального тока на нём падало 0.6 В. И, возможно, придется пересчитать делитель на R2-R4. Да, и не забыть про предохранитель FU2.

Файлы

Обновление от 13 мая 2014 г. Файлы к статье: исходники в Proteus и печатка в виде gif и pdf.

Источник

11 примеров: схемы на самодельное зарядное устройство для автомобильного аккумулятора

Разбор больше 11 схем для изготовления ЗУ своими руками в домашних условиях, новые схемы 2017 и 2018 года, как собрать принципиальную схему за час.

  1. По каким основным причинам происходит разрядка автомобильного аккумулятора на дороге?

А) Автомобилист вышел из транспорта и забыл выключить фары.

Б) Аккумуляторная батарея слишком нагрелась под воздействием солнечных лучей.

  1. Может ли аккумулятор выйти из строя, если автомобилем не пользуются долгое время (стоит в гараже без запуска)?

А) При долгом простое аккумуляторная батарея выйдет из строя.

Б) Нет, батарея не испортится, ее потребуется только зарядить и она снова будет функционировать.

  1. Какой источник тока используется для подзарядки АКБ?

А) Есть только один вариант — сеть с напряжением в 220 вольт.

Б) Сеть на 180 Вольт.

  1. Обязательно снимать аккумуляторную батарею при подключении самодельного устройства?

А) Желательно производить демонтаж батареи с установленного места, иначе возникнет риск повредить электронику поступлением большого напряжения.

Б) Необязательно снимать АКБ с установленного места.

  1. Если перепутать «минус» и «плюс» при подключении ЗУ, то аккумуляторная батарея выйдет из строя?

А) Да, при неправильном подключении, аппаратура сгорит.

Б) Зарядное устройство просто не включится, потребуется переместить на положенные места необходимые контакты.

Ответы:

  1. А) Не выключенные фары при остановке и минусовая температура – наиболее распространенные причины разряда АКБ на дороге.
  2. А) АКБ выходит из строя, если долго не подзаряжать ее при простое автомобиля.
  3. А) Для подзарядки применяется напряжение сети в 220 В.
  4. А) Не желательно производить зарядку батареи самодельным устройством, если она не снята с автомобиля.
  5. А) Не следует путать клеммы, иначе самодельный аппарат перегорит.

Аккумулятор на автотранспорте требуют периодической зарядки. Причины разряжения могут быть разные — начиная от фар, что хозяин забыл выключить, и до отрицательных температур в зимний период на улице. Для подпитки АКБ потребуется хорошее зарядное устройство. Такое приспособление в больших разновидностях представлено в магазинах автозапчастей. Но если нет возможности или желания покупки, то ЗУ можно сделать своими руками в домашних условиях. Имеется также большое количество схем — их желательно все изучить, чтобы выбрать наиболее подходящий вариант.

Определение: Зарядное устройство для автомобиля предназначается для передачи электрического тока с заданным напряжением напрямую в АКБ.

Ответы на 5 часто задаваемых вопросов

  1. Потребуется ли производить какие-то дополнительные меры, перед тем как приступать к зарядке аккумуляторной батареи на своём автомобиле? – Да, потребуется почистить клеммы, поскольку во время работы на них появляются кислотные отложения. Контакты очень хорошо нужно почистить, чтобы ток без трудностей поступал к батарее. Иногда автомобилисты используют смазку для обработки клемм, ее тоже следует убрать.
  2. Чем протереть клеммы зарядных устройств? — Специализированное средство можно купить в магазине или приготовить самостоятельно. В качестве самостоятельно изготовленного раствора используют воду и соду. Компоненты смешиваются и перемешиваются. Это отличный вариант для обработки всех поверхностей. Когда кислота соприкоснется с содой, то произойдет реакция и автомобилист обязательно ее заметит. Это место и потребуется тщательно протереть, чтобы избавиться от всей кислоты. Если клеммы ранее обрабатывались смазкой, то она убирается любой чистой тряпкой.
  3. Если на аккумуляторе стоят крышки, то их нужно вскрывать перед началом зарядки? — Если крышки имеются на корпусе, то их обязательно снимают.
  4. По какой причине необходимо откручивать крышечки с аккумуляторной батареи? — Это нужно, чтобы газы, образующиеся в процессе зарядки, беспрепятственно выходили из корпуса.
  5. Есть необходимость обращать внимание на уровень электролита в аккумуляторной батарее? – Это делается в обязательном порядке. Если уровень ниже требуемого, то необходимо добавить дистиллированную воду внутрь аккумулятора. Уровень определить не составит труда – пластины должны быть полностью покрыты жидкостью.
Читайте также:  ТОП 10 беспроводных зарядок для iPhone какую беспроводную зарядку выбрать для iphone xr 11 11pro

Ещё важно знать: 3 нюанса об эксплуатации

Самоделка по способу эксплуатации несколько отличается от заводского варианта. Это объясняется тем, что у покупного агрегата имеются встроенные функции, помогающие в работе. Их сложно установить на аппарате, собранном дома, а потому придется придерживаться нескольких правил при эксплуатации.

  1. Зарядное устройство, собранное своими руками не будет отключаться при полной зарядке аккумулятора. Именно поэтому необходимо периодически следить за оборудованием и подключать к нему мультиметр – для контроля заряда.
  2. Нужно быть очень аккуратным, не путать «плюс» и «минус», иначе зарядное устройство сгорит.
  3. Оборудование должна быть выключено, когда происходит соединение с зарядным устройством.

Выполняя эти простые правила, получится правильно произвести подпитку АКБ и не допустить неприятных последствий.

Топ-3 производителей зарядных устройств

Если нет желания или возможности своими руками собрать ЗУ, то обратите внимание на следующих производителей:

  1. Стек.
  2. Сонар.
  3. Hyundai.

Фирмы хорошо зарекомендовали себя на рынке, а потому о надежности и функциональности переживать при покупке не следует.

Как избежать 2-х ошибок при зарядке аккумуляторной батареи

Необходимо соблюдать основные правила, чтобы правильно подпитать батарею на автомобиле.

  1. Напрямую к электросети аккумуляторную батарею запрещено подключать. Для этой цели и предназначается зарядные устройства.
  2. Даже если устройство изготавливается качественно и из хороших материалов, всё равно потребуется периодически наблюдать за процессом зарядки, чтобы не произошли неприятности.

Выполнение простых правил обеспечит надежную работу самостоятельно сделанного оборудования. Гораздо проще следить за агрегатом, чем после тратиться на составляющие для ремонта.

Самое простое зарядное устройство для АКБ

Схема 100% рабочего ЗУ на 12 вольт

ЗУ на 12 вольт

ЗУ на 12 вольт

Посмотрите на картинке на схему ЗУ на 12 В. Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт. Максимальный ток, получаемый при заряде составляет 6 А. Но аппарат также подходит и для других аккумуляторов – литий-ионных, поскольку напряжение и выходной ток можно отрегулировать. Все основные компоненты для сборки устройства можно найти на сайте Aliexpress.

  1. dc-dc понижающий преобразователь.
  2. Амперметр.
  3. Диодный мост КВРС 5010.
  4. Концентраторы 2200 мкФ на 50 вольт.
  5. трансформатор ТС 180-2.
  6. Предохранители.
  7. Вилка для подключения к сети.
  8. «Крокодилы» для подключения клемм.
  9. Радиатор для диодного моста.

Трансформатор используется любой, по собственному усмотрению Главное, чтобы его мощность была не ниже 150 Вт (при зарядном токе в 6 А). Необходимо установить на оборудование толстые и короткие провода. Диодный мост фиксируется на большом радиаторе.

Схема ЗУ Рассвет 2

Посмотрите на картинке на схему зарядного устройства Рассвет 2. Она составлена по оригинальному ЗУ. Если освоить эту схему, то самостоятельно получится создать качественную копию, ничем не отличающуюся от оригинального образца. Конструктивно устройство представляет собой отдельный блок, закрывающийся корпусом, чтобы защитить электронику от влаги и воздействия плохих погодных условий. На основание корпуса необходимо подсоединить трансформатор и тиристоры на радиаторах. Потребуется плата, что будет стабилизировать заряд тока и управлять тиристорами и клеммы.

1 схема умного ЗУ

Умное ЗУ

Умное ЗУ

Посмотрите на картинке принципиальную схему умного зарядного устройства. Приспособление необходимо для подключения к свинцово-кислотным аккумуляторам, имеющим емкость — 45 ампер в час или больше. Подключают такой вид аппарата не только к аккумуляторам, что ежедневно используются, но также к дежурным или находящимся в резерве. Это довольно бюджетная версия оборудования. В ней не предусмотрен индикатор, а микроконтроллер можно купить самый дешевый.

Если имеется необходимый опыт, то трансформатор собирается своими руками. Нет необходимости устанавливать также и звуковые сигналы оповещения — если аккумулятор подключится неправильно, то загоревшаяся лампочка разряда будет уведомлять об ошибке. На оборудование необходимо поставить импульсный блок питания на 12 вольт — 10 ампер.

1 схема промышленного ЗУ

11 примеров: схемы на самодельное зарядное устройство для автомобильного аккумулятора

Посмотрите на схему промышленного зарядного устройства от оборудования Барс 8А. Трансформаторы используются с одной силовой обмоткой на 16 Вольт, добавляется несколько диодов vd-7 и vd-8. Это необходимо для того, чтобы обеспечить мостовую схему выпрямителя от одной обмотки.

1 схема инверторного устройства

Инверторный вид

Инверторный вид

Посмотрите на картинке схему инверторного зарядного устройства. Это приспособление перед началом зарядки разряжает аккумуляторную батарею до 10,5 Вольт. Ток используется с величиной С/20: «C» обозначает ёмкость установленного аккумулятора. После этого процесса напряжение повышается до 14,5 Вольт, при помощи разрядно-зарядного цикла. Соотношение величины заряда и разряда составляет десять к одному.

1 электросхема ЗУ электроника

Схема Электроника

Схема Электроника

1 схема мощного ЗУ

Мощное ЗУ

Мощное ЗУ

Посмотрите на картинке на схему мощного зарядного устройства для автомобильного аккумулятора. Приспособление применяется для кислотных АКБ, имеющих высокую емкость. Устройство с легкостью заряжает автомобильный аккумулятор, имеющий емкость в 120 А. Выходное напряжение устройство регулируется самостоятельно. Оно составляет от 0 до 24 вольт. Схема примечательна тем, что в ней установлено мало компонентов, но дополнительные настройки при работе она не требует.

2 схемы советского ЗУ

Советское ЗУ

Советское ЗУ

Многие уже могли видеть советское зарядное устройство. Оно похоже на небольшую коробку из металла, и может показаться совсем ненадежной. Но это вовсе не так. Главное отличие советского образца от современных моделей — надежность. Оборудование обладает конструктивной мощностью. В том случае, если к старому устройству подсоединить электронный контроллер, то зарядник получится оживить. Но если под рукой такого уже нет, но есть желание его собрать, необходимо изучить схему.

Читайте также:  Зарядные устройства для canon power shot

К особенностям их оборудования относят мощный трансформатор и выпрямитель, с помощью которых получается быстро зарядить даже сильно разряженную батарею. Многие современные аппараты не смогут повторить этот эффект.

Электрон 3М

Схема Электрон 3М

Схема Электрон 3М

Источник

Большая Энциклопедия Нефти и Газа

Выносной щуп

Для проверки тока срабатывания реле к электродам выносного щупа подключаются последовательно магазин сопротивления и миллиамперметр. [16]

Течеискатель типа ГТИ-3 состоит из измерительного блока и выносного щупа , в котором смонтированы датчик, вентилятор и телефонный зуммер. [17]

Галоидный течеискатель ГТИ-3 ( рис. 160) состоит из выносного щупа и измерительного блока. Течеискатель предназначен для обнаружения негерметичностп ( течи) в системах методом опрессовки их галоидосодержащими газами, а также для обнаружения в атмосфере галоидосодержащих газов. [18]

Комплект БГТИ-5 включает в себя измерительный блок с питанием, выносной щуп и зарядное устройство для заряда комплекта аккумуляторов. [20]

Когда колодец, щ котором скопился фреон, найден, выносной щуп прибора ГТИ-2 приближают к проверяемому кабелю, тщательно обследуют всю его поверхность ( особенно у мест запайки муфт и перчаток) и по наибольшему отклонению стрелки миллиамперметра, имеющегося в приборе ( или по изменению частоты звукового индикатора), определяют точное место повреждения оболочки кабеля. [21]

Течеискатель ГТИ-ЗА выполнен в виде переносного прибора и состоит из выносного щупа с датчиком, предназначенным для работы в атмосферных условиях, и. Течеискатель ГТИ-6 — прибор вакуумно-атмосферного типа — комплектуется атмосферным датчиком, вакуумным датчиком, выносным обдувателем с регулируемым потоком и регистрирующим блоком. Вакуумный датчик прибора представляет собой фланец, на котором смонтированы чувствительный элемент и кислородный инжектор. Оба течеискателя питаются от сети переменного тока и могут быть использованы при контроле изделий в лабораторных и цеховых условиях. [22]

Для определения мест утечки течеискатель включают в сеть напряжением 220 в и наконечником выносного щупа ( пистолета) обследуют подозреваемые места. Скорость перемещения щупа не должна превышать 5 — 10 см / сек. [23]

Блок-схема прибора приведена на рис. 10.35, а общий видна рис. 10.36. Прибор состоит из выносного щупа и измерительного блока с питанием. [25]

Искровой дефектоскоп ВК-60 состоит из переносного ящика, в котором расположены источники питания, преобразователь и выносной щуп с высоковольтным кабелем. [27]

Для определения места повреждения наиболее эффективным способом является применение индикаторного газа фреоиа-22 или фреона-12 и галогенного течеискателя БГТИ-5 ( рис. 109), который состоит из измерительного блока, зарядного устройства и выносного щупа и предназначен для обнаружения в воздухе концентрации некоторых газов, в частности фреона. В передней части щупа, имеющего форму пистолета, находится датчик, помещенный в стальной корпус. Концентрация газа фреона фиксируется стрелкой прибора и звуковым сигналом в головном телефоне. [29]

В течеискателе ВАГТИ-4 накал дат — чика в отличие от течеискателя ГТИ-3 можно плавно регулировать с помощью потенциометра. С выносным щупом можно работать при положении переключателя 1 и 10, так как в положении 100 флюктуации начального тока датчика могут составлять 40 — 50 % шкалы. [30]

Источник



Устройство галогенного батарейного течеискателя БГТИ – 5

Рис.1.2. Выносной щуп: 1-датчик; 2-корпус; 3-втулка; 4-радиатор; 5-электродвигатель;6-крыльчатка

Течеискатель ВГТИ-5 предназначен для обнаружения мест нарушения герметичности в конструкциях методом опрессовки (созданием давления выше атмосферного) пробным веществом, содержащим галогены (фтор, хлор, бром, йод). Питание течеискателя осуществляется от батареи из 12 аккумуляторов НКГК-ПД напряжением 12,5-15 В, которые обеспечивают 4-часовую работу прибора.

Чувствительность течеискателя к потоку фреона (Ф-12 или Ф-22) не менее 7·10 -3 л·мк рт. ст. (1,5 Г/год). Такой поток вызывает показание на стрелочном приборе не менее 30% шкалы.

Постоянная времени течеискателя (время с момента поднесения выносного щупа к месту течи до момента появления сигнала на стрелочном приборе, равного 20% шкалы » I »):

— при выносном щупе без удлинительных насадок — не более 3 с;

— при выносном щупе с удлинительной насадкой 700 мм — не более 10 с. Усилитель измерительного блока имеет три предела чувствительности, устанавливаемые переключателем «Род работы»: 1,10 и 100 мкА.

Принцип действия

Принцип работы течеискателя БГПИ-5 основан на свойстве накаленной платины увеличивать ионную эмиссию со своей поверхности в присутствии газов, содержащих галогены. Чувствительный элемент течеискателя – датчик — представляет собой диод с платиновыми электродами.

Ионы, эмитируемые накаленной платиной, попадают на коллектор диода. При попадании в межэлектродное пространство диода газов, содержащих галогены, ионная эмиссия с поверхности эмиттера увеличивается. Ионный ток диода усиливается и регистрируется стрелочным и звуковым индикатором течи. Структурная схема галогенного течеискателя БГТИ-5 приведена на рис.1.1.

Рис.1.3. Датчик: 1-эмиттер (платиновая проволока ПЛ -1, длина 380 мм); 2 -коллектор; 3-каркас; 4,9 -втулка; 5-основание; 6-винт; 7-П -держатель; 8-гайка;

Измерительный блок включает в себя стрелочный и акустический индикаторы течи, преобразователь и регулятор накала датчика.

Стрелочный индикатор течи представляет собой усилитель постоянного тока, на выходе которого имеется стрелочный прибор.

Усилитель имеет три диапазона чувствительности. В положении I выходной ток поступает на вход усилителя, в положении 10 — только одна десятая часть входного тока, а в положении 100 -одна сотая часть тока.

В положении I переключателя отклонение стрелки измерительного при­бора на конец шкалы происходит от входного сигнала I мкА, в положении 10 — от входного сигнала 10 мкА, в положении 100 — от входного сигнала 100 мкА.

В положении переключателя «Род работы» — «Контр.пит.», предназна-ченном для контроля напряжения батареи аккумуляторов, прибор с добавочным сопротивлением имеет шкалу 20 В.

Конструкция течеискателя

Для удобства работы выносной щуп оформлен в виде пистолета, основная часть которого изготовлена из пластмассы. В передней части щупа размещен датчик. Эмиттер датчика выполнен в виде спирали из платиновой проволоки, навитой на керамический каркас. Коллектор ионов представляет собой цилиндр из нержавеющей стали, внутри которого приварен цилиндр из платиновой фольги (рис.1.2, 1.3).

Оба электрода укреплены на общем керамическом основании и помещены в стальной корпус, который закреплен в пластмассовом корпусе выносного щупа. За датчиком в пластмассовом корпусе размещено вентиляционное устройство, которое представляет собой пластмассовую турбинку, закрепленную на оси малогабаритного электродвигателя.

В комплекте поставки прибора имеется течь Галот -I. Течь представ-ляет собой устройство, дающее постоянный поток вещества, содержащего галогены. Течь предназначена для периодической проверки чувствительности течеискателя.

Источник