Меню

TP4056 модуль заряда аккумуляторов 18650 с защитой Type C USB

TP4056 модуль заряда аккумуляторов 18650 с защитой, Type-C USB

Модуль зарядки для одного Li-ion аккумулятора 18650 типа, с разъемом питания, для подключения обычной зарядки, от мобильного телефона, или БП, «Type-C», на надежной и проверенной микросхеме TP4056. Кроме микросхемы управляющей режимом заряда, на моду. Перейти к полному описанию

Артикул: 25169618

Сегодня с 10:00 до 20:00 (до открытия

    пн — вск: 10.00 — 20.00 без выходных

Таганская, Марксистская, Пролетарская, Крестьянская застава

«>на Таганке: есть в наличии 87

Доставка для г. Москва:

Самовывоз сегодня с 10 часов: бесплатно

Доставка до двери: 300 руб.

Доставка в более чем 120 ПВЗ: загрузка

  • Описание
  • Вопрос-ответ (0)
  • Гарантии и возврат
  • Наличие

Модуль зарядки для одного Li-ion аккумулятора 18650 типа, с разъемом питания, для подключения обычной зарядки, от мобильного телефона, или БП, » Type-C «, на надежной и проверенной микросхеме TP4056. Кроме микросхемы управляющей режимом заряда, на модуле установлено дополнительно несколько чипов, обеспечивающих защиту аккумулятора от перегрузки по току нагрузки, и от переразряда.

Внимание! При подключении аккумулятора к модулю, не допускайте переплюсовки. Это может за несколько секунд вывести модуль из строя!

  • Тип модуля/микросхема(ы): контроль заряда li-ion 18650, — TP4056A,защита -DW01A+FS8205A
  • Входное напряжение: 5V DC
  • Напряжение прекращения зарядки: 4.2V(точность ±1%)
  • Ток зарядки: 1А
  • Напряжение защиты от переразряда: 2.5V
  • Ток защитного отключения при перегрузке: два уровня — 27А в течении 3 сек. и 3А более 10 сек.
  • Размеры модуля: 2.6*1.7см.

Пример схемы использования модуля, вместе с повышающим DC-DC конвертером на 5V(с права на рисунке, в комплект не входит), для зарядки мобильных устройств от одного 18650 li-ion аккумулятора. С левой стороны схемы, подключается зарядка 5V с разъемом Type-C для зарядки аккумулятора. С правой стороны, в обычный USB разьем, подключается кабель для зарядки мобильного телефона, или планшета и пр. Можно так же использовать для питания платы микроконтроллера Arduino.

Источник

Простое зарядное устройство литий-ионных аккумуляторов малой ёмкости на TP4056

Прогресс в сфере носимой коммуникационной электроники, такой как мобильные телефоны, планшеты и ноутбуки, происходит быстрыми темпами, и даже можно сказать скачками. Современные портативные устройства хотя и выполнены на экономичных и энерго-эффективных чипах и процессорах, но в общей сложности, ввиду своей многофункциональности, энергопотребление устройства в целом довольно велико, и следовательно требует ёмких аккумуляторов питания и мощных зарядных устройств для этих аккумуляторов. Это всё ничего, но такими зарядными устройствами невозможно корректно зарядить аккумуляторы малой ёмкости, которые зачастую достаются радиолюбителю из старых мобильных телефонов или разобранных батарей ноутбуков:

Аккумуляторы старых мобильных телефоновАккумуляторы из разобранной батареи ноутбука
Аккумуляторы старых мобильных телефонов и из разобранной батареи ноутбука

Такие аккумуляторы, как правило, извлекаются из отработавших определённый срок устройств, и характеризуются пониженной ёмкостью и возросшим внутренним сопротивлением. Их вполне можно использовать в различных радиолюбительских самоделках с автономным питанием и сравнительно низким энергопотреблением, но если заряжать такие аккумуляторы стандартными современными средствами током большой величины, то прекращение заряда будет происходить при их неполной зарядке, что нецелесообразно, и не позволит задействовать весь оставшийся ресурс.

Описание

Как раз для корректной и полной зарядки отработавших и потерявших свои первоначальные свойства аккумуляторов и разрабатывалось предлагаемое простое зарядное устройство, максимальный зарядный ток которого не превышает 350 мА, а процесс зарядки производится методом ток-напряжение до значения 4,35 В. Имеется индикация режима зарядки и защита самого устройства от короткого замыкания в нагрузке. Питание производится от осветительной сети 220В, или от автономного источника с постоянным напряжением 5В, а собрано всё в компактном корпусе ЗУ мобильного телефона:

Внешний вид готового устройства
Внешний вид готового устройства

Внимание! Автор статьи не является разработчиком отдельных узлов единой конструкции, и никак не претендует на их схемотехнические решения. Данное устройство работает под высоким напряжением, опасным для жизни. Строго соблюдайте все меры безопасности. При повторении и/или ремонте Вы всё делаете на свой страх и риск. Автор не несёт никакой ответственности за Ваши действия.

Что бы не придумывать всё с нуля и облегчить задачу как проектирования, так и повторения, за основу конструкции был взят модуль зарядки литий-ионных аккумуляторов с обозначением TP4056, который собран на одноимённой микросхеме, представляющей собой линейный стабилизатор тока с внешним резистором, задающим его значение. В составе имеется разного рода защита и индикация режимов работы, а его цена на Алиэкспресс довольно низкая, которая составляла 12 центов на момент написания статьи. Там же есть и вариант с защитой самого заряжаемого аккумулятора от глубокой разрядки, но в данном случае такая опция была не нужна:

Плата модуля зарядки TP4056
Плата модуля зарядки TP4056

Сам модуль имеет разъём микро-USB для подачи питания, которое дублируется на контактных площадках возле него. Так же на контактные площадки выведено выходное напряжение, для подачи на заряжаемый аккумулятор. Как уже говорилось, основой модуля является микросхема TP4056, кроме которой на плате установлены индикаторные светодиоды и некоторая обвязка. Типовая схема включения микросхемы довольна простая, и дополнительно учитывает подключение датчика температуры, для защиты заряжаемого аккумулятора от перегрева, но его подключение на плате модуля не предусмотрено, хотя при большом желании терморезистор можно подсоединить к первому выводу микросхемы:

Типовая схема включения микросхемы TP4056
Типовая схема включения микросхемы TP4056

Входное напряжение питания 5 Вольт, на модуль подаётся через разъём USB, или на контактные площадки «IN+» и «IN-«, а аккумулятор подключается к площадкам с обозначением «BAT+» и «BAT-«. Во время процесса зарядки светится красный светодиод, а после завершения он гаснет, и зажигается светодиод зелёного цвета свечения. Интересной особенностью микросхемы является тот факт, что необходимый ток зарядки аккумулятора можно задавать внешним резистором, который называется программным, и на плате модуля он отмечен как «R-prog». На готовом модуле сопротивление этого резистора рассчитано на зарядный ток 1А, что довольно много для аккумуляторов небольшой ёмкости. В официальной документации на микросхему TP4056 представлена формула для расчёта силы зарядного тока по определённому сопротивлению этого резистора:

Схема подключения модуля зарядки TP4056

Формула для расчёта сопротивления программного резистора
Схема подключения модуля зарядки TP4056 и формула для расчёта сопротивления программного резистора

Кроме этого имеется так же таблица готовых значений сопротивления этого резистора под определённую силу зарядного тока. Самым оптимальным током зарядки для небольших аккумуляторов был выбран ток порядка 350 мА, которому в этой таблице соответствует значение сопротивления где то между 3 и 4 кОм. Далее заводской резистор поверхностного монтажа был выпаян, а на его место был установлен выводной резистор на сопротивление 3,3 кОм. Если считать по формуле, то зарядный ток как раз получается около 360 мА. Так же с платы были удалены штатные светодиоды, а их контакты были выведены наружу тонкими цветными проводниками в изоляции:

Таблица соответствия тока зарядки от сопротивления резистора Доработанная плата модуля TP4056
Доработанная плата модуля TP4056 и таблица соответствия тока зарядки от сопротивления резистора

Так же цветные проводники были припаяны и к контактным площадкам модуля, для дальнейшего подключения к месту назначения. А сама плата была установлена в нижнюю часть корпуса с сохранением штатного USB-разъёма, под который в нужном месте было сделано продолговатое отверстие. Через этот разъём можно будет производить зарядку аккумуляторов от других автономных источников с выходным напряжением 4,5 — 7,5 Вольт:

Установленная в корпус плата модуля TP4056
Установленная в корпус плата модуля TP4056

В качестве штатного источника питания, был применён преобразователь сетевого напряжения, уже имеющийся в используемом корпусе адаптера для телефона. Его принципиальная схема очень простая, и по желанию её можно легко повторить. Преобразователь основан на обратно-ходовом блокинг-генераторе и содержит минимум деталей. Подобное устройство уже описывалось в предыдущей статье, но хотя, по сравнению с прошлым, в схеме и имеется второй транзистор, её сборка будет ненамного сложнее одно-транзисторной конструкции:

Принципиальная схема преобразователя сетевого напряжения

Входное напряжение осветительной сети, через ограничитель тока на резисторе R1, который одновременно выполняет роль предохранителя, подаётся на выпрямительный мост на диодах D1 — D4, и выпрямляясь сглаживается фильтрующим конденсатором C1.

На транзисторе Q1 выполнен блокинг-генератор, возбуждающийся за счёт положительной обратной связи по переменному току, посредством трансформатора Tr1, через цепочку C4, R6.

Стабилизация выходного напряжения, а точнее напряжения на обмотке связи III, происходит за счёт отрицательной обратной связи по постоянному напряжению через выпрямительный диод D6, и задающий уровень выходного напряжения стабилитрон ZD1. Конденсатор C3 сглаживает пульсации выпрямленного напряжения отрицательной обратной связи, а само выходное напряжение преобразователя снимается с обмотки II трансформатора, выпрямляясь диодом D5 и сглаживаясь конденсатором фильтра C2.

Индикаторный светодиод LED1 с ограничительным резистором R7 на выходе играет роль индикатора, и некоторой начальной нагрузки, без которой напряжение на обмотках трансформатора может возрасти неограниченно, что приведёт прежде всего к пробою транзисторов и выходу их из строя.

На транзисторе Q2 собран узел отрицательной обратной связи по току, защищающий ключевой транзистор и выходные элементы от перегрузок. Как видно, стабилизация выходного напряжения не выполняется непосредственно, что является главным недостатком схемы и причиной низкой стабильности выходного напряжения, но в данном случае это не критично, так как к выходу будет подключаться модуль TP4056, имеющий в своём составе стабилизатор тока и напряжения. Полная схема всего зарядного устройства выглядит следующим образом:

Полная схема зарядного устройства с модулем TP4056

Вместо указанного преобразователя, можно использовать любой другой источник с ЭДС от 4,5В до 7,5В, обеспечивающий необходимый ток нагрузки. Ну а далее рассмотрим, как самостоятельно собрать и наладить зарядное устройство с описываемым преобразователем, как с самым простым вариантом.

Коротко о деталях

Конденсаторы C1, C2 и C3 электролитические, C1 на напряжение не ниже 400 Вольт, а C2 на удвоенное значение выходного напряжения. Все резисторы малогабаритные, с мощностью рассеивания 0,25 Вт. Выпрямительные диоды D1 — D4 высоковольтные, на ток от 1 А. Диоды D5 и D6 должны быть высокочастотными, с малым временем восстановления. От стабилитрона ZD1 (должен иметь малый ток стабилизации) зависит средний уровень выходного напряжения, который должен уметь обеспечивать трансформатор и преобразователь в целом. Силовой транзистор ключа Q1 так же высоковольтный, обратной проводимости, малой или средней мощности. В качестве второго транзистора можно использовать почти любой экземпляр из транзисторов малой мощности, с коэффициентом передачи тока базы от 50 и невысоким обратным током коллектора. В одном из таких преобразователей даже использовался советский транзистор KT315, который нормально работал в данной схеме.

Читайте также:  Как работает сквозная зарядка Power bank

Сам трансформатор выполнен на ферритовом сердечнике E24/12/6 типоразмера Ш6×6, который обязательно должен иметь зазор между двумя его половинами. В данном случае зазор был составлен из одного слоя обмоточного теплостойкого скотча. Первичная обмотка содержит 300 витков провода, диаметром 0,08 мм, а обмотки II и III имеют по 8 витков. Провод обмотки II должен выдерживать выходной ток нагрузки и может иметь диаметр 0,6 — 0,8 мм. Диаметр провода обмотки обратной связи III не критичен и можно использовать провод с диаметром от 0,1 мм. Между обмотками следует намотать изоляционный материал, такой как трансформаторная бумага или теплостойкий скотч. Обязательно нужно обратить внимание на фазировку обмоток, начала которых на принципиальной схеме обозначены точками. При неправильной фазировке преобразователь не запустится, или будет работать некорректно.

Конструкция устройства

Все радиоэлементы преобразователя размещены на односторонней плате небольших размеров, к которой с одного края подводится сетевое напряжение от вилки на корпусе устройства, а с другого снимается выходное постоянное напряжение, подаваемое далее на вход платы модуля зарядки, установленной в корпусе, рядом с сетевой вилкой. К выходу модуля TP4056 подсоединены два провода различных цветов, продетые в гибкий направляющий фиксатор для вывода наружу. Посадочное место штатного светодиода преобразователя оказалось продублированным на другом конце платы, где впоследствии дополнительно был установлен второй светодиод зелёного цвета свечения. Контактные дорожки этих светодиодов были разрезаны, и к ним так же были припаяны разноцветные проводники, ведущие от контактных площадок предварительно удалённых светодиодов на плате зарядки. Для дополнительного светодиода, во второй части корпуса, в соответствующем месте было просверлено отверстие. Для окончательной сборки плата до упора вставляется в пазы внутри корпуса, головки светодиодов при этом выглядывают наружу. Держатель шнура фиксируется в предназначенной для него прорези, а половинки корпуса стягиваются винтом:

Плата преобразователя Дополнительное отверстие в корпусе

Сборка устройства Готовое зарядное устройство
Плата преобразователя и готовое зарядное устройство

Тестирование / Зарядка аккумулятора

Прежде чем окончательно собрать зарядное устройство в корпус, было замерено выходное напряжение преобразователя, с подключённым к нему модулем зарядки (уровень напряжения на входе модуля). Значение этого напряжения составило 5,5 Вольт, которое можно считать напряжением холостого хода:

Выходное напряжение преобразователя на холостом ходу
Выходное напряжение преобразователя на холостом ходу

При нормальной работе устройства, без подключённого аккумулятора, светится зелёный индикаторный светодиод, а напряжение на выходе при этом поддерживается в районе 4,1 Вольт. Во время короткого замыкания выходных проводников зелёный светодиод гаснет, и зажигается красный, а уровень выходного тока при этом не превышает значения 0,1 Ампер, что вполне безопасно как для самого устройства, так и для соединительных проводов:

Выходное напряжение устройства без подключённого аккумулятора
Выходное напряжение устройства без подключённого аккумулятора

Ток короткого замыкания выходных проводников
Ток короткого замыкания выходных проводников

Далее к изготовленному зарядному устройству был подключен разряженный до конца аккумулятор, и в начале, ток зарядки составил ровно 350 мА. При этом светится красный светодиод, а по истечении получаса, зарядный ток упал до значения 200 мА. Корпус устройства во время процесса слегка нагрелся, но по ощущению температура нагрева была невысокой, и её замеры не проводились:

Зарядка аккумулятора
Зарядка аккумулятора

Ток зарядки в начале процесса
Ток зарядки в начале процесса

Снижение зарядного тока
Снижение зарядного тока

В самом конце процесса зарядки напряжение на аккумуляторе достигает значения 4,35 Вольт, а ток зарядки снижается до уровня 36 мА, после чего резко падает, и процесс зарядки прекращается. При этом красный светодиод гаснет, и зажигается зелёный, сигнализируя об окончании зарядки аккумулятора. По истечении некоторого времени ЭДС аккумулятора снижается, но зарядка не возобновляется до определённого порога, указанного в документации на микросхему модуля:

Напряжение полностью заряжённого аккумулятора
Напряжение полностью заряжённого аккумулятора

Снижение зарядного тока в конце процесса зарядки
Снижение зарядного тока в конце процесса зарядки

Снижение ЭДС аккумулятора после завершения зарядки
Снижение ЭДС аккумулятора после завершения зарядки

В полевых условиях, при отсутствии осветительной сети, но при наличии автономного источника тока с соответствующим напряжением, такого как хранилище энергии (Power Bank) или ноутбук, заряжать аккумуляторы можно через разъём микро-USB, в обход преобразователя сетевого напряжения, который в таком случае не задействован, и в зарядке участвует только модуль TP4056. Заряжаемый аккумулятор подключается как обычно, а питание на устройство подаётся USB кабелем:

Питание зарядного устройства посредством USB
Питание зарядного устройства посредством USB

Самодельное зарядное устройство, собранное из простых и доступных деталей, получилось компактным и довольно надёжным. Его можно использовать на постоянной основе, для зарядки аккумулятора какого-либо одного устройства, или применить как универсальное устройство для зарядки большинства имеющихся аккумуляторов малой и средней ёмкости. Так например полная зарядка старого использованного аккумулятора с остаточной ёмкостью 800 мА*час, производится примерно за три часа, а по желанию можно установить другой ток зарядки, установив необходимый программный резистор, и использовав соответствующий преобразователь сетевого напряжения.

Тем, кому лень читать статью, для простого ознакомления с зарядным устройством можно посмотреть короткое видео.

Источник

Реинкарнация «народной» платы TP4056 или самодельная зарядка для лития на 3А

Всех приветствую, кто заглянул на огонек. Речь в обзоре пойдет, как вы наверно уже догадались, об одной интересной модификации «народного» зарядного модуля TP4056 на ток 3А и небольшом применении в качестве самодельной зарядки для лития. Будет небольшое тестирование и простенький пример изготовления зарядки из дешевых компонентов, поэтому, кому интересно, милости прошу под кат.

Итак, вот та самая модификация «народной» платки:

Применение данной платы:

  • Зарядка Li-Ion аккумуляторов, встроенных в конечное устройство. Частый случай – в устройстве несколько запараллеленных банок и 1А слишком мало. Ну, сами посудите, есть две-три банки по 2,6-3Ач, общая емкость около 6-7Ач. Заряд такой батареи займет около 7-8 часов, а с данной платкой – около 3 часов. Как пример – самодельные ПБ, аккумуляторные отвертки и минишуруповерты
  • Сборка своего «быстрого» зарядника на один или два аккумулятора. Современные высокоемкие аккумуляторы на 3300-3500mah спокойно могут принимать 3-4А, а уж две запараллеленные банки тем более (перед зарядом лучше приблизительно уравнять потенциалы). Сами производители допускают заряд некоторых банок током 3-4А, об этом написано в даташитах на эти банки.

ТТХ:

  • Входной разъем – DC Port 5мм + дублирующие выводы;
  • Входное напряжение — 4,5V-5,5V
  • Конечное напряжение заряда — 4,2V (Li-Ion аккумуляторы);
  • Максимальный зарядный ток — 3А;
  • Количество модулей TP4056 — 4 (макс. разгонный ток 4А);
  • Индикация – дискретный двухцветный светодиод (красный/зеленый);
  • Защита от переполюсовки — нет;
  • Размеры — 65мм*15мм.

Комплектация:

  • Плата заряда 4*TP4056 на 3А;
  • Двухцветный трехногий светодиод (красный/синий свет);
  • DC разъем 5мм.

image

Поставляется платка в обычном мелком пакете, до меня доехала за две-три недели. Внутри пакета была своеобразная защита – два склеенных листа пенополиэтилена, внутри которых и была платка:

image

Плата зарядки крупным планом:

image

По схемотехнике ничего сверхъестественного – просто взяли и запараллелили 4 контроллера TP4056, одновременно уменьшив максимальный зарядный ток для каждого контроллера с 1А до 750ma. Поначалу я не мог понять, почему максимальный зарядный ток всего 3А, ведь контроллеров то четыре, но приглядевшись, увидел не привычный 1,2Ком SMD резистор, а 1,6Ком. Причем во всех плечах стоит резистор 1,6Ком:

image

Напомню таблицу максимального зарядного тока в зависимости от номинала токозадающего резистора:

image

В нашем случае стоят резисторы по 1,6Ком для каждого контроллера, по 750ma на плечо. Следовательно, общий максимальный зарядный ток – 3А. Оно и к лучшему, меньше греется платка, да и 4А уже многовато. С другой стороны, если нужен зарядный ток 4А – меняем 4 резистора.

Регулировать общий зарядный ток подпайкой подстроечного/переменного резистора, скорее всего, не получится, ибо нужно задавать для каждого контроллера.

Итого, кому сложно или не хочет сам спаивать народные платки — неплохое решение проблемы.

Размеры платки:

Платка совсем небольшая, всего 65мм*15мм:

image

Вот сравнение с «народной» платой TP4056 на 1А, 18650 аккумулятором и холдером:

image

При необходимости можно откусить переднюю часть платы, на которую впаивается DC разъем и припаяться к контактам 5V+ или 5V-, либо напрямую к соответствующим дорожкам:

image

Так длина платки станет на 1 сантиметр короче. Ранее я уже переделывал народную платку, вот что получилось:

image

В нашем случае все просто до невозможности, ибо дорожки на печатной плате не страдают. Разумеется, кому необходим DC разъем – оставляем, либо подпаиваем его через провода к контактам 5V+ или 5V-. Разъемы microUSB и miniUSB здесь нежелательны, будут сильно греться, ибо не рассчитаны на такие токи. Да и незачем они, ибо в большинстве адаптерах стоит ограничение на 2,5А. Но с другой стороны, если адаптер не отключается при перегрузке, то мы экономим на дискретном блоке питания, ну и ток будет чуть меньше. Поэтому, решать вам…

Тестирование платки 4*TP4056 3A:

Теперь протестируем платку. Действительно ли она заряжает 3А? Для этого нам поможет ампервольтметр, который частенько мелькает в моих обзорах (замер тока заряда) и привычный мультиметр (замер напряжения на аккумуляторе). В качестве источника питания – импульсный БП S-30-5 на 5V/6A:

image

Как видим, заряд действительно идет постоянным током 3А (фаза СС), пока напряжение на банке не превысит 3,9V-3,95V, затем начинает плавно снижаться (начинается фаза CV). Как только напряжение на банке равняется 4,2V, цвет светодиода меняется на зеленый, означая, что заряд окончен. Хотя из-за инерционности ток продолжает еще течь:

image

После этого еще 10-15 минут ток снижается, при этом напряжение на аккуме 4,21V. Как только ток снизится до 150ма, контроллер полностью отключает заряд, напряжение на банке скидывается до 4,2V.

Практически «выжатую» банку Sanyo UR18650ZY 2600mah модуль зарядил за 75-80 минут. Ну что же, просто великолепно!

Небольшой пример сборки своего зарядника на 3А:

В качестве примера приведу пример постройки своего зарядного устройства из проверенных недорогих компонентов. Что нам для этого понадобится:

1)Непосредственно сама обозреваемая плата TP4056*:

image

image

Вот такие холдеры ни в коем случае не применяйте, 3А для них много:

image

Можно попробовать переделать дрянную зарядку, выпаяв все кишки:

Читайте также:  Дрели и шуруповерты в интернет магазине ОБИ

image

Я рекомендую первый вариант, т.к. они с легкостью выдерживают 3А, ибо контакты на порядок лучше, да и имеют паз для провода.

3)Любой подходящий разъем: DC port* (поставляется в комплекте с платой), USB (не очень желательно), Molex* (при питании от компьютера), силовые модельные или автомобильные разъемы (какие найдутся под рукой):

image

В крайнем случае, можно вывести просто два провода и гонять все хозяйство на скрутке, как в моем случае, :-).

image

Нужен именно медный, а не омедненный. Определить легко – зачищаем ножом и если жилки начинают блестеть и не лудятся, значит, провод омедненный (алюминий покрытый медью). Рекомендую либо качественный акустический, либо бытовые, типа ШВВП.

5) Блок питания (БП) на 5V на 5-6A (с запасом). Я использовал БП S-30-5 на 5V/6A*:

image

Можно применить часто встречающийся БП на 12V на 2-3A, которые идут в комплекте к различным устройствам и понижающий DC-DC преобразователь на 5А (3А они стабильно держат). Но здесь есть пара минусов, ибо усложняется схема и повышается себестоимость зарядника. Поэтому, если нет в наличии подходящего БП, то используем БП компьютера. Дополнительная нагрузка в 15Вт ему не страшна, если, конечно, он и так не работает на пределе своих возможностей. Если есть в наличии свободный Molex разъем, то подцепить к нему переходник не составит труда. В таком случае нам нужны красный (+) и черный (-) провода.

Итак, с компонентами разобрались. Теперь непосредственно сборка:

Поскольку платка будет использоваться в другом устройстве и у меня уже есть хорошие высокотоковые зарядники, то самодельная зарядка мне не нужна, поэтому сборка, как говорится, на коленке (подпаивать разъемы я не буду):

image

Берем холдер для аккумулятора и вырезаем пластик на торцах для провода (на фото нижний паз):

image

Далее подпаиваемся с правой стороны к плюсовому контакту и укладываем провод в пазу:

image

image

Далее припаиваем минусовой выход платы (В-) к другому, минусовому выводу холдера, а проведенный в пазу провод – к плюсовому выходу платы (В+):

image

Потом припаиваем питающие провода с разъемами или без них, в зависимости от того, какой вариант вы выбрали. Трехногий светодиод изгибаем по своему усмотрению, но чтобы не коротнуть его выводы – натягиваем на них изоляцию от любого провода:

image

Закрываем плату пластиковой крышкой от кабель-канала или аналогичным кожухом и заматываем всеми известной изолентой, :-). Получается довольно кустарно, но главное работает:

image

Контрольная проверка, все работает:

image

Я не стал припаивать разъемы, а подключил напрямую к БП. Я же рекомендую припаять соответствующий разъем, который выдержит длительное протекание тока 3А. На этом у меня все…

Плюсы:

  • Надежная, проверенная годами элементная база;
  • Высокий ток заряда;
  • Возможность увеличения зарядного тока до 4А путем замены токозадающих резисторов;
  • Небольшой размер;
  • Простота монтажа и эксплуатации.

Минусы:

  • Цена великовата;
  • Платка не предназначена для зарядки последовательных сборок (2S, 3S, 4S и более не умеет);
  • Требуется внешнее питание;
  • Боится переполюсовки;
  • Некоторая заторможенность последней фазы заряда (CV).

Вывод: полезная модификация народной платки TP4056* на большой зарядный ток, брать можно!

Источник

Модули защиты и контроллеры заряд/разряд для Li-ion аккумуляторов

Для начала нужно определиться с терминологией.

Как таковых контроллеров разряда-заряда не существует. Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки — сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде — это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют защиту от глубокого разряда.

При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого зарядного устройства для литиевого аккумулятора.

Плата защиты li-ion со сборкой полевых транзисторов 8205А

Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:

Защита для лития 18650

И вот тоже они:

Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).

Контроллеры заряда-разряда

Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).

DW01-Plus

Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.

Схема модуля защиты литиевого аккумулятора на DW01

Сама микросхема DW01 — шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.

Вывод 1 и 3 — это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта. Вывод 2 — датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.

Паразитные диоды, встроенные в полевики, позволяют осуществлять заряд аккумулятора, даже если сработала защита от глубокого разряда. И, наоборот, через них идет ток разряда, даже в случае закрытого при перезаряде транзистора FET2.

Сборка полевичков 8205

Вся схема выглядит примерно вот так:

Правая микросхема с маркировкой 8205А — это и есть полевые транзисторы, выполняющие в схеме роль ключей.

S-8241 Series

SEIKO S-8241 Series (защита Li-ion)

Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241.

Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.

AAT8660 Series

Схема на ААТ8660 для защиты литиевого аккумулятора

Решение от Advanced Analog Technology — AAT8660 Series.

Пороговые напряжения составляют 2.5 и 4.32 Вольта. Потребление в заблокированном состоянии не превышает 100 нА. Микросхема выпускается в корпусе SOT26 (3х2 мм, 6 выводов).

FS326 Series

FS326 Series для защиты полимерных аккумуляторов

Очередная микросхема, используемая в платах защиты одной банки литий-ионного и полимерного аккумулятора — FS326.

В зависимости от буквенного индекса напряжение включения защиты от переразряда составляет от 2.3 до 2.5 Вольт. А верхнее пороговое напряжение, соответственно, — от 4.3 до 4.35В. Подробности смотрите в даташите.

LV51140T

Плата PCB для защиты li-ion от глубокого разряда

Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T.

Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы — вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.

R5421N Series

Схема защиты литиевого аккумулятора на микросхемах серии R5421N

Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки — порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).

Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:

Обозначение Порог отключения по перезаряду, В Гистерезис порога перезаряда, мВ Порог отключения по переразряду, В Порог включения перегрузки по току, мВ
R5421N111C 4.250±0.025 200 2.50±0.013 200±30
R5421N112C 4.350±0.025
R5421N151F 4.250±0.025
R5421N152F 4.350±0.025

SA57608

Плата защиты лития на ИМС SA57608

Очередной вариант контроллера заряда/разряда, только уже на микросхеме SA57608.

Напряжения, при которых микросхема отключает банку от внешних цепей, зависят от буквенного индекса. Подробности см. в таблице:

Обозначение Порог отключения по перезаряду, В Гистерезис порога перезаряда, мВ Порог отключения по переразряду, В Порог включения перегрузки по току, мВ
SA57608Y 4.350±0.050 180 2.30±0.070 150±30
SA57608B 4.280±0.025 180 2.30±0.058 75±30
SA57608C 4.295±0.025 150 2.30±0.058 200±30
SA57608D 4.350±0.050 180 2.30±0.070 200±30
SA57608E 4.275±0.025 200 2.30±0.058 100±30
SA57608G 4.280±0.025 200 2.30±0.058 100±30

SA57608 потребляет достаточно большой ток в спящем режиме — порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).

LC05111CMT

LC05111 для защиты лития

Ну и напоследок предлагаем интересное решение от одного из мировых лидеров по производству электронных компонентов On Semiconductor — контроллер заряда-разряда на микросхеме LC05111CMT.

Решение интересно тем, что ключевые MOSFET’ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.

Переходное сопротивление встроенных транзисторов составляет

11 миллиом (0.011 Ом). Максимальный ток заряда/разряда — 10А. Максимальное напряжение между выводами S1 и S2 — 24 Вольта (это важно при объединении аккумуляторов в батареи).

Микросхема выпускается в корпусе WDFN6 2.6×4.0, 0.65P, Dual Flag.

Схема, как и ожидалось, обеспечивает защиту от перезаряда/разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.

Контроллеры заряда и схемы защиты — в чем разница?

Важно понимать, что модуль защиты и контроллеры заряда — это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой. Сейчас поясню в чем разница.

Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV — постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество «заливаемой» в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.

По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.

Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу — при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.

Читайте также:  Прохождение Сталкер Путь человека Возвращение

Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (

4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.

Источник



Умный контроллер заряда литиевых аккумуляторов — модуль на tp4056

модули заряда литиевых аккумуляторов

Для долгой и счастливой жизни литиевого аккумулятора очень важно правильно его заряжать. Не менее важно контролировать так же и разряд. На наше спасение, уже давно придумали контроллер заряда литиевых аккумуляторов в виде готового модуля. Но можно ли ему доверять, сейчас мы это и проверим.

Перед прочтением рекомендую посмотреть мой ролик про модули заряда литиевых аккумуляторов.

  1. Как заряжать литиевые аккумуляторы
  2. Микросхемы контроля заряда литиевых аккумуляторов
  3. Модуль контроля заряда Li-ion аккумулятора
  4. Как регулировать ток заряда
  5. Измерение характеристик модуля
  6. Измерения заряда аккумулятора
  7. Умный модуль бережет аккумулятор
  8. Контроль разряда аккумулятора
  9. Как греется модуль
  10. Где купить модуль заряда Li акумулятора?
  11. Заключение

Как заряжать литиевые аккумуляторы

Вся фишка зарядки литиевых аккумуляторов кроется в том, что ни ток заряда ни напряжение не должен быть постоянными. Процесс заряда должен проходить по определенным фазам:

  1. При полной разрядке аккумулятора (
  2. По мере накопления заряда, т.е. повышении напряжения аккумулятора, ток заряда должен уменьшаться.
  3. При достижении 90% от полного заряда, ток заряда должен снизиться до уровня порядка 0,1С. Как только напряжение на аккумуляторе достигнет 4.1-4.15 В, процесс заряда должен прекратиться.

Соблюдение этих правил заряда литиевого аккумулятора обеспечит ему продолжительный срок службы. Разрядка литиевого аккумулятора ниже 3 вольт, а так же его регулярная перезарядка даже на 0.1 вольта значительно сокращает емкость аккумулятора.

Микросхемы контроля заряда литиевых аккумуляторов

Сегодня существуют микросхемы, представляющие собой готовый контроллер заряда литиевых аккумуляторов. Одной из таких микросхем является TP4056 ( скачать даташит ). Схема контроллера заряда литиевых аккумуляторов на TP4056 выглядит следующим образом:

схема зарядки на tp4056

Однако, если вам вздумалось ее реализовать, то спешу вас огорчить. Потраченные усилия, время и деньги во много много раз превысят стоимость готового модуля, построенного по точно такой же схеме и даже усиленного более мощными транзисторами на выходе.

Модуль контроля заряда Li-ion аккумулятора

Готовый модуль контроля заряда литиевого аккумулятора можно купить всего за 30 центов .

Обращаю ваше внимание, что такие модули бывать не только с контроллером заряда аккумулятора. Есть так же версии с контролем разряда аккумулятора.

модули зарядки li ion аккумуляторов

Картинка демонстрирует все четыре варианта подобных модулей. Два левых модуля полностью аналогичны двум правым модулям, разница заключается только в установленном разъеме. А вот между собой, два левых модуля, как и два правых отличаются возможностью контроля разряда аккумулятора.

Если на модуле помимо контактов для аккумулятора В+ и В- также присутствуют контакты OUT+и OUT- то это значит, что модуль умеет контролировать разряд аккумулятора, а подключение нагрузки к аккумулятору происходит через модуль.

Не стоит бояться что версия с контроллером разряда посадит вам аккумулятор. Измерения показали, что потребление тока самим модулем составляет всего около 5 микро Ампер. Что меня даже немного удивило.

Как регулировать ток заряда

В исходном состоянии модуль может выдать максимальный ток заряда до 1 Ампера. Если нужно больше, то смотрите мой видосик в начале статьи.

Если же емкость аккумулятора меньше 1000мА*ч, то максимальный ток заряда лучше снизить до значения, равного емкости аккумулятора или еще ниже, особенно если аккумулятор не очень новый. Для этого стоит заменить резистор RPROG на подходящий номинал.

установка тока заряда литиевого аккумулятора

Измерение характеристик модуля

Мерить мы будем следующее:

  1. Процесс зарядки — посмотрим, как меняется ток заряда от напряжения на аккумуляторе.
  2. Разрядку , а точнее умение модуля продолжительно отдавать ток в нагрузку, а так же умение отрубать аккумулятор по достижении порога разряда.

Для этих целей нам понадобится вольтметр и амперметр. Но я рожа ленивая, да и мерить вручную в наш век — мартышкин труд. Поэтому на помощь был позван микроконтроллер PIC18F4550. Он умеет общаться с компом по USB и обладает 10-битным АЦП на борту.

Амперметр и вольтметр далее изображены условно. И вольтметр и амперметр реализованы на дифференциальных усилителях. Для измерения тока использован низкоомный резистор, разность напряжений с выводов которого и снимается дифференциальным усилителем. Такому методу измерения тока недавно была посвящена отдельная статья.

измерение модуля зарядки li ion

С выходов диф. усилителей сигнал поступает на АЦП микроконтроллера. Шаг АЦП по напряжению составляет около 5 мВ, чего для таких измерений более чем достаточно. Чтобы максимально снизить погрешность, данные приходящие за 10 секунд усреднялись ( по 200 приходящих значений).

Все пытки проводились с участием аккумулятора Sony VTC6 формата 18650. Этот аккумулятор обладает емкостью 3000 мА*ч. Максимальный выходной ток аккумулятора может достигать 30 А.

Измерения заряда аккумулятора

Для изучения процесса заряда аккумулятора была реализована следующая измерительная схема:

схема измерения заряда li ion аккумулятора

Полученный с ее помощью график, представлен на следующей картинке. Для удобства синим обозначена зависимость тока, а красным — зависимость напряжения от времени. При этом время указанно в секундах.

график заряда li ion аккумулятора

6000 секунд соответствуют 100 минутам или же в более привычном виде это 1 час 40 минут. Соответственно полная зарядка аккумулятора заняла около 6 часов. При емкости аккумулятора в 3000 мАч, средний ток заряда можно считать равным 500мА.

На графике отлично видны все три описанные выше фазы зарядки. Схемка отрабатывает все как и положено. Между разными экземплярами модулей присутствует небольшой разброс конечного напряжения, но он не критичен.

Стоит отметить, что любое измерение физической величины это лишь попытка приближения к истинному значению. Не стоит обращать внимание на мелкие зубчики, их природа может быть вызвана как неравномерностью АЦП так и нелинейностью модуля. Что совсем не критично.

В любом случае получившаяся зависимость отлично удовлетворяет всем правилам заряда аккумулятора.

Умный модуль бережет аккумулятор

Я не зря назвал этот модуль умным. Если внимательно присмотреться к моменту подачи питания на модуль, то можно увидеть небольшую ступеньку на зависимости тока. Вот так она выглядит крупным планом:

график заряда li ion аккумулятора

Речь идет о ступеньке между 500 и 600 секундами на уровне 100 мА. Эта ступенька присутствует если аккумулятор разряжен ниже 3 вольт.

Модуль бережно относится к аккумулятору. Сначала он доводит напряжение на аккумуляторе примерное до 3 вольт током в 100 мА. А уже затем начинает кочегарить через аккумулятор 1 ампер. Ну или ток, который был установлен резистором RPROG.

Контроль разряда аккумулятора

Для изучения выходных характеристик модуля схема была несколько изменена. В качестве нагрузки был установлен переменный резистор, включенный последовательно с амперметром к выходным контактам модуля.

схема измерения разряда li ion аккумулятора

Сопротивление нагрузочного резистора было установлено так, что начальный ток разряда составлял около 1.15 А. Т.к. нагрузка была постоянной, соответственно ток в выходной цепи падал с падением напряжения на аккумуляторе.

график разряда li ion аккумулятора

Как видно из графика, модуль благополучно отрубил нагрузку от аккумулятора в районе 5000 сек. А это значит, что модуль отдавал ток порядка 1 ампера в течении полутора часов и не загнулся. Отличный результат)

Рост напряжения на аккумуляторе, после отключения нагрузки, вызван химическим восстановлением аккумулятора после столь длительной отдачи приличного тока.

Если аккумулятор был полностью разряжен и модуль его отключил, то включение произойдет, при подключении зарядного устройства, как только напряжение на аккумуляторе достигнет уровня в 2.9 — 3 вольта.

Как греется модуль

В процессе зарядки, когда ток составляет 1 ампер, модуль прилично греется. Стоит учитывать этот факт при использовании модуля в закрытом устройстве. Так, на открытом воздухе температура модуля достигала значений более 70 градусов (по термопаре).

нагрев модуля при зарядке акумулятора

В случае установки модуля в закрытый корпус желательно снизить максимальный ток заряда до 500-700 мА. Но на терма-клей все же не стоит крепить.

У самого же модуля предусмотрена защита от перегрева. Так при перегреве модуль начинает ограничивать выходной ток. Так что от перегрева он скорее всего не сдохнет. Но не стоит полностью полагаться на защиту))

Где купить модуль заряда Li акумулятора?

Я не могу ручаться за все подобные модул. Их производством не брезгует каждый уважающий себя житель поднебесной. Показанные модули заказывались уже не первый раз у конкретного продавца. Которого советую и вам.

Покупать такие модули поштучно не выгодно — продавцы начинают накручивать цену и за модуль и за доставку. Удобнее и дешевле закупать сразу по 5 или 10 штук даже если требуется 1-2. Очень удобно, когда где-то в шкафу лежит кучка таких модулей и при необходимости можно быстро сообразить из них зарядку. Вот ссылки на разные лоты проверенного магазина:

  • 5 шт. micro-USB– 1.57$
  • 5 шт. mini-USB– 1.57$
  • 10 шт. micro-USB– 2.61$
  • 10 шт. mini-USB2.61$

1.57$ за 5 штук, и тем более 2.61$ за 10 штук — это копейки. Во многих магазинах радиодеталей с вас попросят аналогичную сумму за каждый такой модуль.

цены от 16 сентября 2020

Да, ссылки реферальные, но покупая по ним Вы абсолютно ничего не теряете (а теперь даже кэшбэк с них не дают). Зато этим Вы говорите мне спасибо за проделанную работу и помогаете копеечкой моему проекту. За это спасибо и Вам.

Заключение

Честно говоря я и сам не ожидал таких результатов, но модули зарядки литиевых аккумуляторов отлично себя показали. И я однозначно рекомендую к покупке такой контроллер заряда. На таких модулях можно мастерить много интересных штук. В скором времени я покажу как с их помощью соорудить блок бесперебойного питания для камер Canon.

AliExpress RU&CIS

Привет! В этом окошке авторы блогов любят мериться крутостью биографий. Мне же будет гораздо приятнее услышать критику статей и блога в комментариях. Обычный человек, который любит музыку, копание в железе, электронике и софте, особенно когда эти вещи пересекаются и составляют целое, отсюда и название — АудиоГик. Материалы этого сайта — личный опыт, который, надеюсь, пригодится и Вам. Приятно, что прочитали 🙂

Источник