Меню

Схема зарядного устройства для андроида

Карманное ЗУ на основе адаптера сотового телефона

Постоянное обновление парка сотовых телефонов привело к бесполезному хранению и накоплению сетевых адаптеров, которые по параметрам и разъёму не могут использоваться на других моделях.

Возможно использование адаптеров сотовых телефонов для зарядки мощных автомобильных аккумуляторов.

Прямое подключение адаптера для зарядки автомобильных аккумуляторов невозможно — низкое выходное напряжение в пределах 4-8 вольт при токе заряда до 200 мА при необходимых параметрах 12 вольт 10 ампер. При рассмотрении схем обратноходовых импульсных источников питания, входящих в адаптеры, выявлено, что они содержат: сетевой выпрямитель с фильтром; блокинг-генератор с положительной обратной связью от отдельной обмотки; выходной низковольтный выпрямитель.

Стабилизация вторичного напряжения в некоторых адаптерах выполняется с помощью оптопары, включенной светодиодом к выходному напряжению выпрямителя, а фототранзистором в базовую цепь транзистора генератора преобразователя. Мощность адаптеров сотовых телефонов не превышает 3-5 ватт.

Для получения мощного зарядного устройства из адаптера сотового телефона достаточно схему выпрямителя дополнить усилителем мощности.

Удобство использования сотовых адаптеров заключается в отсутствии необходимости конструирования блокинг- генератора, намотки импульсного трансформатора, установки режима генерирования при значительных колебаниях сетевого напряжения. Компактные габариты печатной платы адаптера совместно с усилителем мощности и выходным выпрямителем занимают незначительное место, а по весу в15-20 раз меньше, чем зарядные устройства на силовых трансформаторах.
Практически такое устройство — карманного типа.

Основные технические характеристики:
Напряжение сети 165-265 Вольт.
Номинальное выходное напряжение 12 Вольт
Максимальный ток нагрузки 6 Ампер
Частота преобразования 50 -70 кГц
Вес 200 грамм
Максимальная выходная мощность 100 ватт

Схема ЗУ на основе адаптера сотового телефона

Резистор R1 защищает диодный мост VD1 от пробоя при бросках зарядного тока конденсатора С3.
Светодиод HL1 указывает на наличие сетевого питания.

Схема импульсного генератора на транзисторе VT1 с внешними RC цепями (помещённая в рамку) относится к адаптеру и может отличаться по компоновке, нумерация деталей адаптера условная.
Резистор R3 создаёт начальное смещение на базу транзистора VT1, для устойчивой генерации в указанном пределе напряжения сети.

Конденсатор С7 заряжается через диод VD3 до амплитуды напряжения обратного хода, которое больше напряжения стабилизации стабилитрона VD4, в результате чего стабилитрон открывается, напряжение на базе транзистора VT1 становится отрицательным и препятствует его открыванию с паузой больше времени импульса. Ток созданный резистором R4 протекает через открытый стабилитрон VD3 на конденсатор С5, разряжая его. Напряжение на этом конденсаторе уменьшается, на базе транзистора VT1 — растёт. При достижении достаточной величины (более 0,4 Вольта ) транзистор VT1 откроется, пауза закончится, начнётся новый цикл генерации.

Напряжение положительной обратной связи с обмотки 3Т2 через конденсатор С4 и резистор R4 откроет транзистор VT1, ток через обмотку 1Т2 лавинно возрастёт и энергия накопленная трансформатором Т2 передастся в виде прямоугольного импульса в базовую цепь усилителя мощности на полевом транзисторе VT2.

Импульс напряжения с обмотки 2Т2 через конденсатор С7 и регулятор тока заряда — R8 поступит на базу транзистора VT2 усилителя мощности. Резистор R9 защищает затвор полевого транзистора от ёмкостных сверхтоков.

От перегрузки транзистора VT2 большими токами в цепи истока установлена схема защиты на параллельном стабилизаторе DA1. Повышение напряжение на резисторе R12 приводит к открытию таймера на микросхеме DA1 и шунтированию цепи затвора.

Ферритового трансформатор Т3, от блоков питания компьютеров типа АТ/ТХ или от мониторов используются в зарядном устройстве без переделок. Первичная обмотка (она имеет до трёх выводов ) включается в цепь стока транзистора VT2, к ней параллельно подключена демпфирующая цепь C8,R10, VD6 — гашения импульсов тока обратного хода, которые могут пробить транзистор или привести к пробою в обмотках трансформатора T3.

Дополнительная цепь защиты на диоде VD7 установлена параллельно транзистору VT2.
Усилитель мощности на полевом транзисторе VT2 через трансформатор T3 передаёт в нагрузку усиленный высокочастотный сигнал, который после выпрямления лавинными диодами сборки VD8 питает зарядным током кислотный аккумулятор GB1. Амперметр РА1 позволяет визуально установить зарядный ток аккумулятора регулятором тока – R8. Светодиод HL2 контролирует полярность подключения аккумулятора GB1 в зарядную цепь и наличие напряжения на выходе устройства.

В импульсных преобразователях применяются полевые транзисторы с индуцированным п- каналом на напряжение 600-800 Вольт и током более трёх ампер с усилением более 1000мА/В. При нулевом напряжении на затворе транзистор закрыт и открывается положительным напряжением прямоугольной формы. Выбор в усилителе мощности полевого транзистора вместо биполярного выгоден по высокой скорости закрывания, что приводит к снижению потерь на нагрев. Зарядное устройство собрано на монтажной плате, плата адаптера установлена на дополнительных стойках.

Фото зарядного устройства

Большая часть радиодеталей в зарядном устройстве используется от разобранных блоков питания компьютеров и мониторов.

Резисторы типа Р2-23. Транзистор VT1 — бюджетный на напряжение 400 Вольт и ток до одного ампера с хорошим усилением более 200.

Полевой транзистор VT2 с крутизной более 1000 мА/В при напряжении более 600 Вольт и токе 3-6 Ампер серий 2СК 1317-1460 или IRF 740-840.
Трансформаторы: Т1- EE-25-01, 3PMCOTC210001. T2 — HI- POT. T3 — HI-POT TNE 9945, ВСК – 01С, АТЕ133N02, R320.
Оксидный конденсатор C4 фирмы «Nichicon» или HP3.
Все диоды импульсные с высоким быстродействием. Диоды выпрямителя VD6 заменимы на КД213Б.

Примерные значения обмоток трансформаторов:
Т1- сердечник 3*3 2*30 витков 0,6мм
Т2- сердечник 3*3. 1-360 витков 0,1мм. 2- 20 витков 0,2. 3- 36 витков 0,1.
Т3- сердечник 12*12. 1- 42 витка 0,6. 2,3 — 2*6 витков 1,6мм.

Полевой транзистор VT2 крепится на радиатор размерами 40*30*30. Клеммы ХТ3, ХТ4 подключаются к аккумулятору многожильным медным проводом в виниловой изоляции сечением 4мм. На концах устанавливаются зажимы типа «Крокодил».

Наладку устройства начинают с проверки работоспособности платы адаптера. Диод и конденсатор выпрямителя адаптера в схеме не используется, сигнал на усилитель мощности берётся непосредственно с обмотки трансформатора 2Т2,через разделительный конденсатор C7. Резистор R7 создаёт начальное смещение на затворе транзистора VT2.

При подключенном аккумуляторе резистором R8 выставляется зарядный ток в 0,05 С, где С — ёмкость аккумулятора. Время заряда определяется техническим состоянием аккумулятора и как правило не превышает 5-7 часов. При обильном кипении (электролизе) ток заряда следует понизить. Более подробно о заряде и восстановлении аккумуляторов можно прочитать в указанной ниже литературе или дополнительно обратится к авторам статьи.

Карманное зарядное устройство автор может принять на заказ. Цена устройства 500 рублей без пересылки.

Литература:
1. В. Коновалов, А.Разгильдеев. Восстановление аккумуляторов. Радиомир 2005 №3 с.7.
2. В.Коновалов. А.Вантеев. Технология гальванопластики.Радиолюбитель №9.2008.
3. В.Коновалов. Пульсирующее зарядно-восстановительное устройство Радиолюбитель № 5 /2007г. стр.30.
4. В.Коновалов. Ключевое зарядное устройство. Радиомир №9/2007 с.13.
5. Д.А.Хрусталёв. Аккумуляторы.г. Москва. Изумруд.2003 г.
6. В.Коновалов «Измерение R-вн АБ».«Радиомир» №8 2004 г. стр.14.
7. В.Коновалов «Эффект памяти снимает вольтдобавка.» «Радиомир» №10.2005 г. стр. 13.
8. В.Коновалов «Зарядно –восстановительное устройство для NI-Cd аккумуляторов.». «Радио» №3 2006 г. стр.53
9. В.Коновалов. «Регенератор АКБ». Радиомир 6/2008 стр14.
10. В.Коновалов. «Импульсная диагностика аккумулятора». Радиомир №7 2008г. стр.15.
11. В.Коновалов. «Диагностика аккумулятора сотовых телефонов». Радиомир 3/2009 11стр.
12. В.Коновалов. «Восстановление аккумуляторов переменным током» Радиолюбитель 07/2007 стр 42.
13. В.Коновалов.ЗУ для «мобильника» с цифровым таймером. Радиомир 4/2009 стр.13.

Источник



Схема распиновки микро usb разъема для зарядки своими руками – переделки и доработки кабелей ЮСБ

Зарядка через usb

Проблемы при зарядке различных устройств через USB часто возникают, когда используются нештатные зарядники. При этом зарядка происходит довольно медленно и не полностью либо вовсе отсутствует.

Следует сказать и о том, что зарядка через USB возможна не со всеми мобильными устройствами. Этот порт у них имеется только для передачи данных, а для зарядки применяется отдельный круглое гнездо.

Читайте также:  Типичные неисправности электровилок и методы их устранения

Выходной ток в компьютерных USB составляет не больше пол-ампера для USB 2.0, а для USB 3.0 – 0,9 А. Ряду девайсов этого может быть недостаточно для нормального заряда.

Бывает, что в вашем распоряжении имеется зарядник, но он не заряжает ваш гаджет (об этом может сообщить надпись на дисплее или будет отсутствовать индикация заряда). Такое ЗУ не поддерживается вашим девайсом, и возможно это из-за того, что ряд гаджетов до начала процесса зарядки сканирует присутствие определенного напряжения на пинах 2 и 3. Для других девайсов может быть важным присутствие перемычки между этими пинами, а также их потенциал.

Таким образом, если устройство не поддерживает предлагаемый тип зарядника, то процесс зарядки не начнется никогда.

Чтобы девайс начал заряжаться от предоставленного ему зарядника, необходимо обеспечить на 2 и 3 пине USB, необходимые напряжения. Для разных устройств эти напряжения тоже могут отличаться.

Для многих устройств требуется, чтобы пины 2 и 3 имели перемычку или элемент сопротивления, номинал которого не больше 200 Ом. Такие изменения можно сделать в гнезде USB_AF, которое находится в вашем ЗУ. Тогда зарядку станет возможно производить стандартным Data-кабелем.

Гаджет Freelander Typhoon PD10 требует той же схемы подключения, но напряжение заряда должно быть на уровне 5,3 В.

USB-AF_Char_Nokia

В случае если у зарядника отсутствует гнездо USB_AF, а шнур выходит прямо из корпуса ЗУ, то можно припаять к кабелю штекеры mini-USB или micro-USB. Соединения необходимо произвести, как показано на следующей картинке:

USB-BMmicro_Char_Nokia

Различная продукция фирмы Apple имеет такой вариант соединения:

USB-AF_Char_iPhone

При отсутствии элемента сопротивления номиналом 200 кОм на пинах 4 и 5 устройства фирмы Motorola не могут осуществить полный заряд.

USB-AF_Char_Motorola

Для зарядки Samsung Galaxy необходимо наличие перемычки на пинах 2 и 3, а также элемента сопротивления на 200 кОм на контактах 4 и 5.

USB-AF_Char_SamsungGalaxy

Полный заряд Samsung Galaxy Tab в щадящем режиме рекомендуется производить при использовании двух резисторов номиналом 33 кОм и 10 кОм, как изображено на картинке ниже:

USB-AF_Char_SamsungGalaxyTab

Такое устройство, как E-ten может заряжаться любым ЗУ, но лишь при условии, что пины 4 и 5 будут соединены перемычкой.

USB-BMmini_Char_E-ten

Такая схема реализована в кабеле USB-OTG. Но в этом случае необходимо использовать дополнительный переходник USB папа-папа.

miniUSB-OTG+USB-A-male-USB-A-male

Универсальное ЗУ Ginzzu GR-4415U и другие аналогичные устройства имеют гнезда с различным соединением резисторов для зарядки девайсов iPhone/Apple и Samsung/HTC. Распиновка этих портов выглядит так:

Универсальное ЗУ Ginzzu GR-4415U

Чтобы зарядить навигатор Garmin, необходим тот же кабель с перемычкой на контактах 4 и 5. Но в этом случае устройство не может заряжаться во время работы. Для того чтобы навигатор мог подзаряжаться, необходимо заменить перемычку на резистор номиналом 18 кОм.

навигатор Garmin

Для зарядки планшетов обычно необходимо 1-1,5 А, но как было упомянуто ранее, USB-порты не смогут нормально заряжать их, поскольку USB 3.0 выдаст максимум 900 мА.

В некоторых моделях планшетов для зарядки имеется круглое коаксиальное гнездо. Плюсовой пин гнезда mini-USB/micro-USB в таком случае не имеет соединения с контроллером заряда аккумулятора. По утверждениям некоторых пользователей таких планшетов, если соединить плюс от гнезда USB с плюсом коаксиального гнезда перемычкой, то зарядка может осуществляться через USB.

А можно и изготовить переходник для подключения в коаксиальное гнездо, как показано на рисунке ниже:

USB-AM__DC-plug

Вот схемы перемычек с указанием напряжения и номиналов резисторов:

В итоге, чтобы осуществлять зарядку различных гаджетов от неродных ЗУ необходимо убедиться в том, что зарядка выдает напряжение 5 В и ток не меньше 500 мА, и внести изменения в гнезде или штекере USB согласно требованиям вашего устройства.

АВТОР: Алексей Алексеевич.

Источник

sxemy-podnial.net

ЗУ SAMSUNG EP-TA10EWE

Предлагаю вашему вниманию зарядное устройство SAMSUNG EP-TA10EWE или адаптер питания. Если увеличите картинку, то увидите на корпусе эту надпись. Это зарядное устройство шло с мобильным телефоном, и потому можно сказать что оно фирменное. Честно скажу, что был приятно удивлён такой большой схеме, так как скептически предполагал более простую схемотехнику.

Фото 1. Адаптер питания разобран

Адаптер питания разобран. Фото 1

Инженеры SAMSUNGа потрудились на славу создавая такой аппарат, в такой маленькой коробочке (смотрите фото 1). В схеме есть и стандартный набор фильтров питания, и интересные микросхемы (на которые даташитов не нашёл совершенно ни каких) и даже синхронный выпрямитель (!), возможно совмещённый со стабилизатором напряжения.

Схема ЗУ SAMSUNG EP-TA10EWE

ЗУ SAMSUNG EP-TA10EWE. Схема

И есть, не очень понятные детали. Одна из них, это предохранитель, а может это и не предохранитель, а резистор…. На плате изображён предохранитель и дано позиционное обозначение F1…. А также рядом написано – 4R7…. Что есть что, не понятно. Это или предохранитель совмещённый с резистором для снижения пусковых токов, или, может просто самовосстанавливающийся предохранитель (смотрите фото 2)?

Фото 2. Предохранитель и резистор

Предохранитель и резистор. Фото 2

Так же присутствует странная SMD деталь (размером примерно 2,5 х 2,5 х 1 мм.) с позиционным обозначением B1 и нулевым сопротивлением. Я предположил, что это ферритовый фильтр и поэтому так и изобразил его на схеме.

Да и ещё хотел сказать, что хорошие защёлки в корпусе адаптера. Вначале пытался вскрыть корпус, ковыряя канцелярским ножом. Но потом, пожалел возможно порезанных пальцев этим самым ножом, просверлил дырку под самую крышку и поддев отвёрткой выломал последнюю, так как корпус мне был не нужен. На первом фото, на крышке видны следы от сверла.

Зарядное устройство Лягушка — ОРБИТА BS-1005

Внешний вид зарядного устройства Лягушка - ОРБИТА BS-1005

Зарядное устройство Лягушка — ОРБИТА BS-1005. Внешний вид

Представляю вашему вниманию Зарядное устройство Лягушка — ОРБИТА BS-1005. Ну, в крайнем случае такая наклейка была на коробке.

Схема зарядного устройства Лягушка - ОРБИТА BS-1005

Зарядное устройство Лягушка — ОРБИТА BS-1005. Схема

Блок питания для низковольтных устройств с ЗУ и прозвонками

Представляю вашему вниманию блок питания, который я наконец-то воспроизвёл на свет.

Внешний вид БП для низковольтных устройств с ЗУ и прозвонками.

БП для низковольтных устройств с ЗУ и прозвонками. Внешний вид

Перед ним были блоки питания, но были они мертворождёнными…. Нет, ими я конечно пользовался, но не часто…. Дело в том, что сделать хороший лабораторный блок питания для радиолюбителя событие такой важности, как сделать ребёнка в семейной жизни…. И при том — любимого ребёнка…. Блоку питанию можно петь Оду любви, если он получился на славу. Не могу сказать, что своей конструкцией я доволен на сто процентов, но доволен. Я в ней воплотил, чуть ли не половину замыслов о блоке питания.

Схема БП для низковольтных устройств с ЗУ и прозвонками.

БП для низковольтных устройств с ЗУ и прозвонками. Схема

Для радиолюбителя ведь важно подобрать соответствующий трансформатор и корпус. И в этой конструкции почти всё совпало. Конечно, нет в ней почти радиатора, но корпус металлический и своё дело делает, тем более, что большие токи мне пока не нужны. Интегральные стабилизаторы радиолюбители применяют уже давно, но чтобы заставить его регулироваться, пришлось «попотеть». Оказалось, что в общей цепи можно применять только низкоомные переменные резисторы, и такие у меня нашлись только проволочные. Но четыре выходных напряжения и два из них регулируемые, позволяют макетировать практические любые низковольтные устройства. Так как я сейчас часто обращаюсь к устройствам с питанием от аккумуляторов мобильных телефонов, то одно регулируемое напряжение я сделал с выходным напряжением от 3 до 4,2 вольта. Так же сделал простейшее зарядное устройство для зарядки аккумуляторов мобильных устройств с током заряда до 1 Ампера. И ещё ввёл в блок питания прозвонку аккустических приборов с прозвонкой цепи, так как они хотя и нужны не часто, но нужны. И, пожалуй, самым не приятным для современного радиолюбителя является трудность приобретения выходных клемм. Да и если они будут в наличии, то радиолюбитель много раз подумает, устанавливать на конструкцию такие габаритные детали. На мой взгляд, я нашёл компромиссное решение.

Читайте также:  Кабель USB C на Lightning от moonfish

Конструкция клеммной колодки

Клеммная колодка. Конструкция

Конструкция получилась легко повторяемой, ведь для неё нужны доступные электрические полиэтиленовые клеммные колодки и лужёная жесть от любой консервной банки. На фотографии изображена такая клеммная колодка и объединённая общая полоса. К такой миниатюрной клеммной колодке можно, в любой момент подключить провод и зажать его винтом или подпаять к лепестку. Зарядным устройством можно плавно регулировать зарядный ток, и контролировать ход заряда по двухцветному светодиоду. Также установил выключатель сетевого питания от компьютерной сетевой переноски, что позволяет оперативно включать/выключать схему. Печатную плату не привожу, так как она индивидуальна.

Монтаж со стороны деталей платы БП

Плата БП в сборе. Монтаж со стороны деталей

И ещё: подготовленный радиолюбитель может мне возразить, что не очень правильно, что я применил однополупериодные выпрямители, но я считаю, что для моих целей это приемлемый компромисс. Тем более такие выпрямители были применены зарубежными радиолюбителями более тридцати лет назад, описание подобной конструкции можно найти в журнале Радио №1, 1987 года.

P.S.: Один мой знакомый, который дал мне схему электронных барабанов, тоже жил с такой бедой. И хотя он был уже давно радиоинженером, дома пользовался блоком питания, который он сделал, будучи ещё начинающим радиолюбителем. С его слов, и с ними я согласен, блок питания сделать просто, и в тоже время неимоверно трудно. Так как, если ты уже определился со схемой и подбираешь детали к своей конструкции, тебя грызёт изнутри червь сомнения – а та ли это схема…. И, как правило, вся идея быстро разваливается….

Выключатель на зарядке для мобильника

Идея проста. Ну почему производители мобильных телефонов не ставят на зарядные устройства (ЗУ) кнопку включения/выключения. Ведь, со временем, для ЗУ находятся определённые места включения и приходится постоянно их туда вставлять, а потом вынимать. Поставьте маленький выключатель на ЗУ и счастья вам немного и привалит!

Зарядное устройство UFO KN-U19

Это ЗУ дал мне на ремонт мой знакомый. Пока «поднимал» схему, нашёл неисправность. Оказалось, спаяны вместе ножки С5. На микросхему не шло питание и всё не работало. Указал на это знакомому, что мол саботаж. А он говорит, что не кому. Загадка. Восстановил работоспособность и вернул.

UFO KN-U19. Зарядное устройство Зарядное устройство UFO KN-U19. Схема ЗУ UFO KN-U19 Зарядное устройство UFO KN-U19 UFO KN-U19. Дисплей Дисплей UFO KN-U19

Зарядное устройство отвёртки аккумуляторной SKIL 4,8V

Принесли в ремонт. Когда вставляешь аккумулятор в ЗУ — не включается заряд. Схему «поднял» . Ёмкость С1 увеличил до 100 мкФ. Заработала.

Схема ЗУ отвёртки аккумуляторной SKIL 4,8V.

Зарядное устройство отвёртки аккумуляторной SKIL 4,8V. Схема.

Зарядное устройство от мобильного телефона NOKIA

Здесь и комментировать нечего. Попалась такая. Заинтересовался. Разобрал. «Поднял». Детали с точкой — SMD.

ЗУ от мобильного телефона NOKIA

Зарядное устройство от мобильного телефона NOKIA

Зарядное устройство АТАВА АТ-508

Попалось как то такое ЗУ в руки. Интересно стало его схему увидеть, вот и «поднял».

Схема ЗУ АТАВА АТ-508

Зарядное устройство АТАВА АТ-508. Схема

Зарядное Устройство В31-5А

Ремонтировал когда-то это ЗУ. Что с ним было и что сделал не помню. Но, схему «поднял». Со временем нашёл паспорт на ЗУ, и дополнил свою схему данными о трансформаторе.

Схема зарядного устройства В31-5А.

Зарядное устройство В31-5А. Схема.

Источник

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Распиновка USB разъемов для зарядки телефонов

Большинство современных мобильных телефонов, смартфонов, планшетов и других носимых гаджетов, поддерживает зарядку через гнездо USB mini-USB или micro-USB. Правда до единого стандарта пока далеко и каждая фирма старается сделать распиновку по-своему. Наверное чтоб покупали зарядное именно у неё. Хорошо хоть сам ЮСБ штекер и гнездо сделали стандартным, а также напряжение питания 5 вольт. Так что имея любое зарядное-адаптер, можно теоретически зарядить любой смартфон. Как? Изучайте варианты распиновки USB и читайте далее.

Распиновка USB разъемов для зарядки телефонов

Распиновка USB разъемов для Nokia, Philips, LG, Samsung, HTC

Бренды Nokia, Philips, LG, Samsung, HTC и многие другие телефоны распознают зарядное устройство только если контакты Data+ и Data- (2-й и 3-й) будут закорочены. Закоротить их можно в гнезде USB_AF зарядного устройства и спокойно заряжать свой телефон через стандартный дата-кабель.

Распиновка USB разъемов для зарядки телефонов

Распиновка USB разъемов на штекере

Если зарядное устройство уже обладает выходным шнуром (вместо выходного гнезда), и вам нужно припаять к нему штекер mini-USB или micro-USB, то не нужно соединить 2 и 3 контакты в самом mini/micro USB. При этом плюс паяете на 1 контакт, а минус — на 5-й (последний).

Распиновка USB разъемов для зарядки телефонов

Распиновка USB разъемов для Iphone

У Айфонов контакты Data+ (2) и Data- (3) должны соединяться с контактом GND (4) через резисторы 50 кОм, а с контактом +5V через резисторы 75 кОм.

Распиновка USB разъемов для зарядки телефонов

Распиновка зарядного разъема Samsung Galaxy

Для заряда Самсунг Галакси в штекере USB micro-BM должен быть установлен резистор 200 кОм между 4 и 5 контактами и перемычка между 2 и 3 контактами.

Распиновка USB разъемов для зарядки телефонов

Распиновка USB разъемов для навигатора Garmin

Для питания или заряда навигатора Garmin требуется особый дата-кабель. Просто для питания навигатора через кабель нужно в штекере mini-USB закоротить 4 и 5 контакты. Для подзаряда нужно соединить 4 и 5 контакты через резистор 18 кОм.

Распиновка USB разъемов для зарядки телефонов

Схемы цоколёвки для зарядки планшетов

Практически любому планшетному компьютеру для заряда требуется большой ток — раза в 2 больше чем смартфону, и заряд через гнездо mini/micro-USB во многих планшетах просто не предусмотрен производителем. Ведь даже USB 3.0 не даст более 0,9 ампер. Поэтому ставится отдельное гнездо (часто круглого типа). Но и его можно адаптировать под мощный ЮСБ источник питания, если спаять вот такой переходник.

Распиновка USB разъемов для зарядки телефонов

Распиновка зарядного гнезда планшета Samsung Galaxy Tab

Для правильного заряда планшета Samsung Galaxy Tab рекомендуют другую схему: два резистора: 33 кОм между +5 и перемычкой D-D+; 10 кОм между GND и перемычкой D-D+.

Распиновка USB разъемов для зарядки телефонов

Распиновка разъёмов зарядных портов

Вот несколько схем напряжений на контактах USB с указанием номинала резисторов, позволяющих эти напряжения получить. Там, где указано сопротивление 200 Ом нужно ставить перемычку, сопротивление которой не должно превышать это значение.

Распиновка USB разъемов для зарядки телефонов

Классификация портов Charger

  • SDP (Standard Downstream Ports) – обмен данными и зарядка, допускает ток до 0,5 A.
  • CDP (Charging Downstream Ports) – обмен данными и зарядка, допускает ток до 1,5 A; аппаратное опознавание типа порта (enumeration) производится до подключения гаджетом линий данных (D- и D+) к своему USB-приемопередатчику.
  • DCP (Dedicated Charging Ports) – только зарядка, допускает ток до 1,5 A.
  • ACA (Accessory Charger Adapter) – декларируется работа PD-OTG в режиме Host (с подключением к PD периферии – USB-Hub, мышка, клавиатура, HDD и с возможностью дополнительного питания), для некоторых устройств – с возможностью зарядки PD во время OTG-сессии.

Как переделать штекер своими руками

Распиновка USB разъемов для зарядки телефонов

Теперь у вас есть схема распиновки всех популярных смартфонов и планшетов, так что если имеете навык работы с паяльником — не будет никаких проблем с переделкой любого стандартного USB-разъема на нужный вашему девайсу тип. Любая стандартная зарядка, которая основывается на использовании USB, предусматривает использование всего лишь двух проводов – это +5В и общий (минусовой) контакт.

Просто берёте любую зарядку-адаптер 220В/5В, от неё отрезаете ЮСБ коннектор. Отрезанный конец полностью освобождается от экрана, в то время как остальные четыре провода зачищаются и залуживаются. Теперь берем кабель с разъемом USB нужного типа, после чего также отрезаем от него лишнее и проводим ту же самую процедуру. Теперь остается просто спаять между собой провода согласно схемы, после чего соединение изолировать каждое отдельно. Полученное в итоге дело сверху заматывается изолентой или скотчем. Можно залить термоклеем — тоже нормальный вариант.

Бонус: все остальные разъёмы (гнёзда) для мобильных телефонов и их распиновка доступны в единой большой таблице — смотреть.

НАЖМИТЕ ТУТ И ОТКРОЙТЕ КОММЕНТАРИИ

Читайте также:  Лучшая быстрая автомобильная зарядка

Повторюсь, подробную информацию можно почерпнуть в статье Типы зарядных портов. Здесь же приведу сводную схему напряжений на контактах USB с указанием номинала резисторов, позволяющих те или иные напряжения получить. Там, где указано сопротивление 200 Ом нужно ставить перемычку, сопротивление которой не должно превышать те самые 200 Ом.

Источник

Схема зарядного устройства для андроида

Схемы импульсных сетевых адаптеров для зарядки телефонов

Большинство современных сетевых зарядных устройств собрано по простейшей импульсной схеме, на одном высоковольтном транзисторе (рис. 1) по схеме блокинг-генератора.

В отличие от более простых схем на понижающем 50 Гц трансформаторе, трансформатор у импульсных преобразователей той же мощности гораздо меньше по размерам, а значит, меньше размеры, вес и цена всего преобразователя. Кроме того, импульсные преобразователи более безопасны — если у обычного преобразователя при выходе из строя силовых элементов в нагрузку попадает высокое нестабилизированное (а иногда и вообще переменное) напряжение со вторичной обмотки трансформатора, то при любой неисправности «импульсника» (кроме выхода из строя оптрона обратной связи — но его обычно очень хорошо защищают) на выходе вообще не будет никакого напряжения.

Рис. 1
Простая импульсная схема блокинг-генератора
Подробнейшее описание принципа действия (с картинками) и расчета элементов схемы высоковольтного импульсного преобразователя (трансформатор, конденсаторы и пр.) можно прочитать, например, в «ТЕА152х Efficient Low Power Voltage supply» по ссылке http://www. nxp.com/acrobat/applicationnotes/AN00055.pdf (на английском).

Переменное сетевое напряжение выпрямляется диодом VD1 (хотя иногда щедрые китайцы ставят целых четыре диода, по мостовой схеме), импульс тока при включении ограничивается резистором R1. Здесь желательно поставить резистор мощностью 0,25 Вт — тогда при перегрузке он сгорит, выполнив функцию предохранителя.

Преобразователь собран на транзисторе VT1 по классической обратноходовой схеме. Резистор R2 нужен для запуска генерации при подаче питания, в этой схеме он необязателен, но с ним преобразователь работает чуть стабильней. Генерации поддерживается благодаря конденсатору С1, включенному в цепь ПОС на обмотке частота генерации зависит от его емкости и параметров трансформатора. При отпирании транзистора напряжение на нижних по схеме выводах обмоток / и II отрицательное, на верхних — положительное, положительная полуволна через конденсатор С1 еще сильней открывает транзистор, амплитуда напряжения в обмотках возрастает. То есть транзистор лавинообразно открывается. Через некоторое время, по мере заряда конденсатора С1, базовый ток начинает уменьшаться, транзистор начинает закрываться, напряжение на верхнем по схеме выводе обмотки II начинает уменьшаться, через конденсатор С1 базовый ток еще сильней уменьшается, и транзистор лавинообразно закрывается. Резистор R3 необходим для ограничения базового тока при перегрузках схемы и выбросах в сети переменного тока.

В это же время амплитудой ЭДС самоиндукции через диод VD4 подзаряжается конденсатор СЗ — поэтому преобразователь и называется обратноходовым. Если поменять местами выводы обмотки III и подзаряжать конденсатор СЗ во время прямого хода, то резко возрастет нагрузка на транзистор во время прямого хода (он может даже сгореть из-за слишком большого тока), а во время обратного хода ЭДС самоиндукции окажется нерастраченной и выделится на коллекторном переходе транзистора — то есть он может сгореть от перенапряжения. Поэтому при изготовлении устройства нужно строго соблюдать фазировку всех обмоток (если перепутать выводы обмотки II — генератор просто не запустится, так как конденсатор С1 будет наоборот, срывать генерацию и стабилизировать схему).

Выходное напряжение устройства зависит от количества витков в обмотках II и III и от напряжения стабилизации стабилитрона VD3. Выходное напряжение равно напряжению стабилизации только в том случае, если количество витков в обмотках II и III одинаковое, в противном случае оно будет другое. Во время обратного хода конденсатор С2 подзаряжается через диод VD2, как только он зарядится до примерно -5 В, стабилитрон начнет пропускать ток, отрицательное напряжение на базе транзистора VT1 чуть уменьшит амплитуду импульсов на коллекторе, и выходное напряжение стабилизируется на некотором уровне. Точность стабилизации у этой схемы не очень высока — выходное напряжение гуляет в пределах 15. 25% в зависимости от тока нагрузки и качества стабилитрона VD3.
Схема более качественного (и более сложного) преобразователя показана на рис. 2

Рис. 2
Электрическая схема более сложного
преобразователя
Для выпрямления входного напряжения используется диодный мостик VD1 и конденсатор , резистор должен быть мощностью не менее 0,5 Вт, иначе в момент включения, при зарядке конденсатора С1, он может сгореть. Емкость конденсатора С1 в микрофарадах должна равняться мощности устройства в ваттах.

Сам преобразователь собран по уже знакомой схеме на транзисторе VT1. В цепь эмиттера включен датчик тока на резисторе R4 — как только протекающий через транзистор ток станет столь большим, что падение напряжения на резисторе превысит 1,5 В (при указанном на схеме сопротивлении — 75 мА), через диод VD3 приоткроется транзистор VT2 и ограничит базовый ток транзистора VT1 так, чтобы его коллекторный ток не превышал указанные выше 75 мА. Несмотря на свою простоту, такая схема защиты довольно эффективна, и преобразователь получается практически вечный даже при коротких замыканиях в нагрузке.

Для защиты транзистора VT1 от выбросов ЭДС самоиндукции, в схему добавлена сглаживающая цепочка VD4-C5-R6. Диод VD4 обязательно должен быть высокочастотным — идеально BYV26C, чуть хуже — UF4004-UF4007 или 1 N4936, 1 N4937. Если нет таких диодов, цепочку вообще лучше не ставить!

Конденсатор С5 может быть любым, однако он должен выдерживать напряжение 250. 350 В. Такую цепочку можно ставить во все аналогичные схемы (если ее там нет), в том числе и в схему по рис. 1 — она заметно уменьшит нагрев корпуса ключевого транзистора и значительно «продлит жизнь» всему преобразователю.

Стабилизация выходного напряжения осуществляется с помощью стабилитрона DA1, стоящего на выходе устройства, гальваническая развязка обеспечивается оптроном V01. Микросхему TL431 можно заменить любым маломощным стабилитроном, выходное напряжение равно его напряжению стабилизации плюс 1,5 В (падение напряжения на светодиоде оптрона V01)’, для защиты светодиода от перегрузок добавлен резистор R8 небольшого сопротивления. Как только выходное напряжение станет чуть выше положенного, через стабилитрон потечет ток, светодиод оптрона начнет светиться, его фототранзистор приоткроется, положительное напряжение с конденсатора С4 приоткроет транзистор VT2, который уменьшит амплитуду коллекторного тока транзистора VT1. Нестабильность выходного напряжения у этой схемы меньше, чем у предыдущей, и не превышает 10. 20%, также, благодаря конденсатору С1, на выходе преобразователя практически отсутствует фон 50 Гц.

Трансформатор в этих схемах лучше использовать промышленный, от любого аналогичного устройства. Но его можно намотать и самому — для выходной мощности 5 Вт (1 А, 5 В) первичная обмотка должна содержать примерно 300 витков проводом диаметром 0,15 мм, обмотка II — 30 витков тем же проводом, обмотка III — 20 витков проводом диаметром 0,65 мм. Обмотку III нужно очень хорошо изолировать от двух первых, желательно намотать ее в отдельной секции (если есть). Сердечник — стандартный для таких трансформаторов, с диэлектрическим зазором 0,1 мм. В крайнем случае, можно использовать кольцо внешним диаметром примерно 20 мм.

Источник