Меню

Sealed rechargeable lead acid battery

Что за аккумулятор sealed rechargeable battery

Группа: Members
Сообщений: 608
Регистрация: 15.4.2004
Из: Великий Новгород
Пользователь №: 689
Спасибо сказали: 0

Нужна достоверная инфа по данной теме.

Вот что я нарыл в инете:
Аккумуляторы:
Герметичные свинцово-кислотные аккумуляторы.
В международной интерпретации принято обозначение в виде SEALED LEAD ACID BATTERY или сокращенно SLA.
Свинцово-кислотный аккумулятор, изобретенный в 1859 году, был первым заряжаемым аккумулятором, предназначенным для использования в коммерческих целях. Сегодня заливаемые свинцово-кислотные аккумуляторы используются в автомобилях и оборудовании, требующим отдачи большой мощности. В портативных приборах используются герметичные аккумуляторы или аккумуляторы с регулирующим клапаном, открывающимся при увеличении давления внутри корпуса выше заданного порогового значения.
Существует несколько технологий изготовления SLA-аккумуляторов: Gelled Electrolite (GEL), Absorptive Glass Mat (AGM), а также различные гибридные технологии, использующие один или несколько способов улучшения параметров аккумуляторов. При изготовлении по GEL-технологии путем добавления в электролит специальных веществ обеспечивается его переход в желеобразное состояние через несколько часов после заполнения аккумулятора. В толще желеобразного электролита происходит образование пор и раковин, имеющих значительный объем и площадь поверхности, где происходит встреча и рекомбинация молекул кислорода и водорода с образованием воды. В результате количество электролита остается неизменным и доливка воды не требуется в течение всего срока службы. При технологии AGM использует пропитанный жидким электролитом пористый заполнитель из стекловолокна. Микропоры этого материала заполнены электролитом не полностью. Свободный объем используется для рекомбинации газов.
SLA-аккумуляторы обычно используется в случаях, когда требуется отдача большой мощности, вес не критичен, а стоимость должна быть минимальной. Диапазон значений емкости для портативных приборов лежит в диапазоне от 1 до 30 A*час. Большие SLA-аккумуляторы для стационарных применений имеют емкость от 50 до 200 A*час.
SLA-аккумуляторы не подвержены «эффекту памяти». Без всякого вреда допускается оставлять аккумулятор в зарядном устройстве на плавающем заряде в течение длительного времени. Сохранение заряда — лучшее среди заряжаемых аккумуляторов. Принимая во внимание, что NiCd аккумуляторы саморазряжаются за три месяца на 40 % от запасенной энергии, SLA-аккумуляторы саморазряжаются на то же самое количество за один год. Эти аккумуляторы недороги, но стоимость их эксплуатации может быть выше, чем у NiCd, если в течение срока эксплуатации требуется большое количество циклов заряд/разряд.
Для SLA-аккумуляторов неприемлем режим быстрого заряда. Типовое время заряда — от 8 до 16 часов.
В отличие от NiCd, SLA-аккумуляторы «не любят» глубоких циклов разряда и хранения в разряженном состоянии. Это приводит к сульфатации пластин аккумулятора, в результате чего их заряд становится трудным, если не невозможным. Фактически, каждый цикл заряда/разряда отнимает у аккумулятора небольшое количество емкости. Эта потеря очень небольшая, если аккумулятор находится в хорошем состоянии, но становится более ощутима, как только емкость понижается ниже 80 % от номинальной. Это в различной степени справедливо и для аккумуляторов других электрохимических систем. Чтобы ослабить влияние глубокого разряда, можно использовать SLA-аккумулятор немного большего размера.
В зависимости от глубины разряда и температуры эксплуатации, SLA-аккумулятор обеспечивает от 200 до 500 циклов заряд/разряд. Основная причина относительно небольшого количества циклов — расширение положительных пластин в результате внутренних химических реакций. Это явление наиболее сильно проявляется при более высоких температурах. SLA-аккумуляторы обладают относительно низкой плотностью энергии по сравнению с другими аккумуляторами и, вследствие этого, непригодны для компактных устройств. Это становится особенно критичным при низких температурах, так как способность отдавать ток в нагрузку при низких температурах значительно уменьшается. Как ни парадоксально, SLA-аккумулятор весьма хорошо заряжается с чередующимися импульсами разряда. В течение этих импульсов ток разряда может достигать значения более 1C (номинальной емкости).
Из-за высокого содержания свинца, SLA-аккумуляторы при неправильной утилизации экологически вредны.
Никель-кадмиевые аккумуляторы.
В международной интерпретации принято обозначение в виде NICKEL-CADMIUM BATTERY или сокращенно NiCd.
Технология изготовления щелочных никелевых аккумуляторов была впервые предложена в 1899 году. Используемые в них материалы были в то время дорогими и аккумуляторы применялись только при изготовлении специальной техники. В 1932 году в пористый пластинчатый никелевый электрод были добавлены активные вещества, а в 1947 году было положено начало исследованиям герметичных NiCd-аккумуляторов, в которых внутренние газы, выделяющиеся во время заряда, рекомбинировались внутри, а не выпускались наружу как в предыдущих вариантах. Эти усовершенствования привели к современному герметичному NiCd-аккумулятору, который и используется сегодня.
NiCd-аккумулятор — ветеран на рынке мобильных и портативных устройств. Отлаженная технология и надежная работа обеспечили ему широкое распространение для электропитания переносных радиостанций, медицинского оборудования, профессиональных видеокамер, регистрирующих устройств, мощных ручных инструментов и другой портативной техники и оборудования. Появление аккумуляторов более новых электрохимических систем хотя и привело к уменьшению использования NiCd-аккумуляторов, однако, выявление недостатков новых видов аккумуляторов привело к возобновлению интереса к NiCd-аккумуляторам.
Их основные достоинства:
• быстрый и простой метод заряда;
• длительный срок службы — свыше тысячи циклов заряда/разряда при соблюдении правил эксплуатации и обслуживания;
• превосходная нагрузочная способность, даже при низких температурах. NiCd-аккумулятор можно перезаряжать при низких температурах;
• простое хранение и транспортировка. NiCd-аккумуляторы принимаются большинством воздушных грузовых компаний;
• легкое восстановление после понижения емкости и длительного хранения;
• низкая чувствительность к неправильным действиям потребителя;
• доступная цена;
• широкий диапазон типоразмеров.
NiCd-аккумулятор подобен сильному и молчаливому работнику, который интенсивно трудится и при этом не доставляет больших хлопот. Для него предпочтителен быстрый заряд по сравнению с медленным и импульсный заряд по сравнению с зарядом постоянным током. Улучшение эффективности достигается распределением импульсов разряда между импульсами заряда. Этот метод заряда, обычно называемый реверсивным, восстанавливает структуру кадмиевых анодов, устраняя тем самым «эффект памяти», и увеличивает эффективность и срок эксплуатации аккумулятора. Кроме этого, реверсивный заряд позволяет проводить заряд большим током за меньшее время, т.к. помогает рекомбинации газов, выделяющихся во время заряда. В результате аккумулятор меньше нагревается и более эффективно заряжается по сравнению со стандартным методом заряда постоянным током. Исследования, проведенные в Германии, показали, что реверсивный заряд добавляет около 15 % к сроку службы NiCd-аккумулятора.
Для NiCd-аккумуляторов вредно нахождение в зарядном устройстве в течение нескольких дней. Фактически, NiCd аккумуляторы — это единственный тип аккумуляторов, который выполняет свои функции лучше всего, если периодически подвергается полному разряду, а если он не производится, то аккумуляторы постепенно теряют эффективность из-за формирования больших кристаллов на пластинах элемента, явления, называемого «эффектом памяти». Для всей остальной разновидности аккумуляторов по электрохимической системе предпочтителен неглубокий разряд.
Среди недостатков NiCd-аккумулятора следует отметить:
• наличие «эффекта памяти» и, вследствие этого, необходимость полной периодической разрядки для сохранения эксплуатационных свойств;
• высокий саморазряд (до 10 % в течение первых 24-х часов), поэтому аккумуляторы должны храниться в разряженном состоянии;
• аккумулятор содержит кадмий и требует специальной утилизации. В ряде стран по этой причине в настоящее время он уже запрещен к использованию.
Никель-металлгидридные аккумуляторы. В международной интерпретации принято обозначение в виде NICKEL METAL-HYDRIDE BATTERY или сокращенно NiMH.
Исследования в области технологии изготовления NiMH-аккумуляторов были начаты в семидесятые годы с целью преодоления недостатков никель-кадмиевых аккумуляторов. Однако применяемые в то время металлгидридные соединения были нестабильны и требуемые характеристики не были достигнуты. В результате разработки в области NiMH-аккумуляторов замедлились. Новые металлгидридные соединения, достаточно устойчивые для применения в аккумуляторах, были разработаны в 1980 году. Начиная с конца восьмидесятых годов, технология изготовления NiMH-аккумуляторов постоянно совершенствовалась, и плотность запасаемой ими энергии возрастала.
Некоторые отличительные преимущества сегодняшних NiMH-аккумуляторов:
• примерно на 40 — 50 % большая удельная емкость по сравнению со стандартными NiCd-аккумуляторами;
• меньшая склонность к «эффекту памяти», чем у NiCd. Периодические циклы восстановления должны выполняться реже;
• меньшая токсичность. NiMH-технология считается экологически чистой.
К сожалению, NiMH-аккумуляторы имеют недостатки и по некоторым параметрам проигрывают NiCd:
• число циклов заряд/разряд для NiMH-аккумуляторов примерно равно 500. Предпочтителен скорее поверхностный, чем глубокий разряд. Долговечность аккумуляторов непосредственно связана с глубиной разряда;
• NiMH-аккумулятор по сравнению с NiCd выделяет значительно большее количество тепла во время заряда и требует более сложного алгоритма для обнаружения момента полного заряда, если не используется контроль по температуре. Большинство NiMH-аккумуляторов оборудовано внутренним температурным датчиком для получения дополнительного критерия обнаружения полного заряда. NiMH-аккумулятор не может заряжаться так быстро, как NiCd; время заряда обычно вдвое больше, чем у NiCd. Плавающий заряд должен быть более контролируемым, чем для NiCd-аккумуляторов;
• рекомендуемый ток разряда для NiMH-аккумуляторов — от 0.2C до 0.5C — значительно меньше, чем для NiCd. Этот недостаток не критичен, если требуемый ток нагрузки низок. Для применений, требующих высокого тока нагрузки или имеющих импульсную нагрузку, типа переносных радиостанций и мощных ручных инструментов, рекомендуются NiCd-аккумуляторы;
• саморазряд NiMH-аккумуляторов — в 1.5-2 раза выше, чем у NiCd;
• цена NiMH-аккумуляторов примерно на 30 % выше, чем NiCd. Однако это не главная проблема, если пользователю требуется большая емкость и небольшие габариты.
Технология изготовления никель-металлгидридных аккумуляторов постоянно совершенствуется. Так, например, фирма GP Batteries International Limited изготавливает NiMH-аккумуляторы для сотовых телефонов фирмы Motorola со следующими характеристиками: количество циклов заряда/разряда — 1000, отсутствие «эффекта памяти» и необходимости разряда аккумулятора перед зарядом.
Литий-ионные аккумуляторы. В международной интерпретации принято обозначение в виде LITHIUM ION BATTERY или сокращенно Li-ion.
Литий является самым легким металлом и обладает сильно отрицательным электрохимическим потенциалом. Благодаря этому литий характеризуется наибольшей теоретической удельной электрической энергией.
Первые работы по литиевым аккумуляторам относятся к 1912 году. Однако только в 1970 году впервые были изготовлены коммерческие экземпляры литиевых источников тока. Попытки разработать перезаряжаемые литиевые источники тока предпринимались в 80-е годы, но были неудачными из-за невозможности обеспечения приемлемого уровня безопасности при их эксплуатации.
В результате исследований, проведенных в 80-х годах, было установлено, что в ходе циклирования источника тока с металлическим литиевым электродом возможно возникновение короткого замыкания внутри литиевого источника тока. При этом температура внутри аккумулятора может достигать температуры плавления лития. В результате бурного химического взаимодействия лития с электролитом происходит взрыв. Поэтому, например, большое количество литиевых аккумуляторов, поставленных в Японию в 1991г., было возвращено производителям после того, как в результате взрывов элементов питания сотовых телефонов от ожогов пострадали несколько человек.
В процессе создания безопасного источника тока на основе лития, исследования привели к замене в аккумуляторе неустойчивого при циклировании металлического лития на его соединения с другими веществами. Эти электродные материалы обладают в несколько раз меньшей по сравнению с литием удельной электрической энергией, однако, аккумуляторы на их основе являются достаточно безопасными при условии соблюдения некоторых мер предосторожности в ходе заряда/разряда. В 1991 году, фирма Sony начала коммерческое производство литий-ионных аккумуляторов и в настоящее время она является одним из самых крупных поставщиков.
Для обеспечения безопасности и долговечности, каждый аккумулятор должен быть оборудован электрической схемой управления для того, чтобы ограничить пиковое напряжение каждого элемента во время заряда и предотвратить понижение напряжения элемента при разряде ниже допустимого уровня. Кроме того, должен быть ограничен максимальный ток заряда и разряда и должна контролироваться температура элемента. При соблюдении этих предосторожностей возможность образования металлического лития на поверхности электродов в ходе эксплуатации (что наиболее часто приводит к нежелательным последствиям) практически устранена.
По материалу отрицательного электрода литий-ионные аккумуляторы можно разделить на два основных типа: с отрицательным электродом на основе кокса (фирма Sony) и на основе графита (большинство других изготовителей). Источники тока с отрицательным электродом на основе графита имеют более плавную разрядную кривую с резким падением напряжения в конце разряда, по сравнению с более пологой разрядной кривой аккумулятора с коксовым электродом. Поэтому, в целях получения максимально возможной емкости, конечное напряжение разряда аккумуляторов с отрицательным коксовым электродом обычно устанавливают ниже (до 2.5 V), по сравнению с аккумуляторами с графитовым электродом (до 3.0 V). Кроме того, аккумуляторы с отрицательным графитовым электродом способны обеспечить более высокий ток нагрузки и меньший нагрев во время заряда и разряда, чем аккумуляторы с отрицательным коксовым электродом. Напряжение окончания разряда 3.0 V для аккумуляторов с отрицательным графитовым электродом является его основным преимуществом, так как полезная энергия в этом случае сконцентрирована внутри плотного верхнего диапазона напряжения, упрощая тем самым проектирование портативных устройств.
Производители непрерывно совершенствуют технологию Li-ion аккумуляторов. Идет постоянный поиск и совершенствование материалов электродов и состава электролита. Параллельно предпринимаются меры для повышения безопасности Li-ion аккумуляторов, как на уровне отдельных источников тока, так и на уровне управляющих электрических схем. Поскольку эти аккумуляторы обладают очень высокой удельной энергией, то необходимо соблюдать осторожность при обращении с ними и тестировании: не допускать короткого замыкания аккумулятора, перезаряда, разрушения, разборки, подключения в обратной полярности, не подвергать их воздействию высоких температур. Нарушение этих правил может привести к физическому и материальному ущербу.
Литий-ионные аккумуляторы являются наиболее перспективными аккумуляторами в настоящее время и начинают широко применяться в портативных компьютерах и мобильных устройствах связи. Это обусловлено:
• высокой плотностью электрической энергии, по крайней мере, вдвое большей, чем у NiCd того же размера, а значит и вдвое меньшими габаритами при той же самой емкости;
• большим числом циклов заряд/разряд (от 500 до 1000);
• хорошей работой на больших токах нагрузки, что необходимо, например, при использовании данных аккумуляторов в сотовых телефонах и портативных компьютерах;
• достаточно низким саморазрядом (2-5% в месяц плюс примерно 3 % на питание встроенной электронной схемы защиты);
• отсутствием каких-либо требований к обслуживанию, за исключением необходимости предварительного заряда перед длительным хранением;
• позволяют проводить заряд при любой степени разряда аккумулятора.

Но и здесь примешивается «ложка дегтя»: для аккумуляторов некоторых производителей гарантируется работа только при положительных температурах, высокая цена (примерно вдвое превышающая цену NiCd-аккумуляторов) и подверженность процессу старения, даже в случае, если аккумулятор не используется. Ухудшение параметров наблюдается примерно после одного года с момента изготовления. После двух лет службы аккумулятор часто становится неисправным. Поэтому не рекомендуется хранить Li-ion аккумуляторы в течение длительного времени. Максимально используйте их, пока они новые.
Кроме этого, Li-ion-аккумуляторы должны храниться в заряженном состоянии. При длительном хранении в глубоко разряженном состоянии они выходят из строя.
Li-ion-аккумуляторы сегодня являются наиболее дорогими. Совершенствование технологии их производства и замена оксида кобальта на менее дорогой материалом может привести к уменьшению их стоимости до 50 % в течение ближайших нескольких лет.
Литий-полимерные аккумуляторы.
В международной интерпретации принято обозначение в виде LITHIUM POLIMER BATTERY или сокращенно Li-Pol.
Литий-полимерные аккумуляторы — последняя новинка в литиевой технологии. Имея примерно такую же плотность энергии, что и Li-ion-аккумуляторы, литий-полимерные допускают изготовление в различных пластичных геометрических формах, нетрадиционных для обычных аккумуляторов, в том числе достаточно тонких по толщине, и способных заполнять любое свободное место в разрабатываемой аппаратуре.
Этот аккумулятор, называемый также «пластиковым», конструктивно подобен Li-ion, но имеет гелевый электролит. В результате становится возможной упрощение конструкции элемента, поскольку любая утечка электролита невозможна.
Li-pol-аккумуляторы начинают применяться в портативных компьютерах и сотовых телефонах. Например, сотовые телефоны Panasonic GD90 и Ericsson T28s (стандарт GSM 900/1800), укомплектованы литий-полимерными аккумуляторами толщиной всего 3 мм и имеют емкость, достаточную для работы в течение 3-х часов в режиме разговора и до 90 часов в режиме ожидания.
Каталог аккумуляторов .

Читайте также:  Сенсор тачскрин Lexand SC7 PRO HD Версия 1

Сообщение отредактировал Russel — 27.8.2005, 11:08

Vovchique

Источник



Герметичные кислотно-свинцовые аккумуляторы

Конструкция, характеристики и области применения герметичных аккумуляторов

Герметичные кислотно-свинцовые аккумуляторы получили широкое применение в системах охранной сигнализации, системах пожарной безопасности, приборах аварийного освещения, в различных контрольно-измерительных приборах, кассовых аппаратах, электронных весах, резервных источниках питания телекоммуникационных систем, источниках бесперебойного питания компьютеров и систем видеонаблюдения, детских электромобилях, легкомоторной технике в качестве бортового аккумулятора и электрифицированных инвалидных креслах.

Отличительные качества герметичных кислотно-свинцовых аккумуляторных батарей

Сфера применения герметичных кислотно-свинцовых аккумуляторов очень велика за счёт простоты обслуживания подобных аккумуляторов и большого разнообразия корпусного оформления батарей, а также богатого выбора ёмкостей аккумуляторов от единиц (1,2 А * ч) до десятков ампер-часов (24 и 38 А * ч).

Номинальные напряжения герметичных свинцово-кислотных батарей: 2, 4, 6, 12 Вольт. Наиболее распространены аккумуляторы на номинальное напряжение 6 и 12 вольт.

Аккумуляторы на 6 Вольт обычно используются в детских электромобилях.

Особенность герметичных кислотно-свинцовых аккумуляторов заключается в том, что электролит в них не жидкий, а гелеобразный. Корпус аккумуляторов герметичен. Эти качества позволяют использовать аккумуляторную батарею в любом положении, не боясь утечки электролита. Гелиевые кислотно-свинцовые батареи не требуют периодического пополнения электролита.

Кроме перечисленных качеств герметичные свинцово-кислотные аккумуляторы не боятся глубокого разряда, могут длительное время храниться в заряженном состоянии при малом токе саморазрядки. Также гелиевые аккумуляторы лишены “эффекта памяти”.

За счёт использования электродов из эффективного свинцово-кальциевого сплава аккумуляторные батареи имеют длительный срок службы и работоспособны при интервале температур от -20 0 С до +50 0 C.

Герметичные кислотно-свинцовые аккумуляторы пригодны и в радиолюбительской практике для резервирования питания различных самодельных электронных приборов.

Максимальный пятисекундный ток разрядки герметичного аккумулятора может достигать 360 Ампер! (у аккумуляторов ёмкостью 38 А * ч и номинальным напряжением 12 вольт).

Зарядное напряжение при циклическом режиме работы (для 12 вольтовых аккумуляторов) составляет 14,4 – 15 Вольт. Для резервного режима 13,5 – 13,8 Вольт (такой режим используется в автоматических охранных и пожарных системах).

Конструкция герметичного свинцово-кислотного аккумулятора

Конструкция герметичного аккумулятора мало отличается от традиционной. Корпус батареи изготавливается из ударопрочной пластмассы и разделён на отдельные секции (“банки”).

Катодные и анодные пластины разделены сепараторами из стекловолокна. Основная составляющая электролита – серная кислота . В верхней части крышки аккумулятора размещены резиновые перепускные клапаны по одному на секцию. Клапаны служат для удаления газа, который может образоваться во время работы. Сверху перепускные клапаны плотно закрыты съёмной пластмассовой крышкой.

Снаружи аккумулятора выводятся два пластинчатых электрода – “ + ” и “”. Плюсовой вывод помечен красным квадратом, а минусовой – чёрным. Электроды представляют собой ответную часть самофиксирующегося разъёма и изготавливаются из латуни.

Недостатки герметичных аккумуляторных батарей

На практике бывало, что герметичная батарея “раздувалась”, деформировался пластмассовый корпус аккумулятора, хотя аккумулятор сохранял свою работоспособность. Связано это с избыточным выделением газа или c производственным браком перепускных клапанов.

Несмотря на корпус из ударопрочного пластика не стоит надеяться на его надёжность. Если на корпусе аккумулятора есть трещины и сколы, то вскоре сквозь эти трещины начнёт просачиваться электролит, особенно если трещина на донной части корпуса. Так как электролит в герметичных батареях в виде геля, то утечка электролита слабая. Утечку электролита можно предотвратить, плотно заклеив трещину в корпусе, например скотчем. Работоспособность аккумулятора при таком дефекте, как правило, сохраняется.

Будьте осторожны – электролит вреден для кожи рук, особенно если на кожном покрове есть раны! Используете для рук защитные средства!

Как уже говорилось, для герметичных аккумуляторов не страшен глубокий разряд, и батарея восстанавливает свою работоспособность после последующей зарядки. Несмотря на это лучше использовать блоки бесперебойного питания с автоматической защитой от глубокого разряда.

Нередки случаи окисления выводов питания аккумуляторных батарей. Связано это с тем, что ответные контактные разъёмы приборов выполнены из металлов, образующих гальваническую пару, что и приводит к образованию “кораллов” – сильному окислу контактов.

Маркировка герметичных свинцово-кислотных аккумуляторов

На корпусах герметичных аккумуляторных батарей, как правило, указаны основные характеристики, правда, в основном на английском языке:

Маркировка аккумулятора

“GS 7-12” – аккумуляторная батарея ёмкостью 7 Ампер-часов и номинальным напряжением 12 Вольт.
“SEALED LEAD-ACID BATTERY” — герметичная свинцово-кислотная батарея.

“Constant voltage charge” — постоянное напряжение заряда при:
“Standby use: 13,5-13,8 V” — резервном режиме: 13,5-13,8 Вольт
“Cycle use: 14,4-15 V” — циклическом режиме: 14,4-15 Вольт
“Initial current: 2,1 A max ” — начальный зарядный ток: 2,1 Ампер максимум.

Источник

sealed rechargeable lead-acid battery

1 sealed lead acid battery

Тематики

2 lead-acid battery

свинцовая аккумуляторная батарея
батарея свинцовых аккумуляторов


[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

Тематики

  • электротехника, основные понятия

Синонимы

3 lead acid battery

свинцово-кислотная аккумуляторная батарея
Аккумуляторная батарея, в которой электроды изготовлены главным образом из свинца, а электролит представляет собой раствор серной кислоты.
[ Инструкция по эксплуатации стационарных свинцово-кислотных аккумуляторных батарей в составе ЭПУ на объектах ВСС России. Москва 1998 г. ]

Свинцово-кислотные аккумуляторы для стационарного оборудования связи

О. Чекстер, И. Джосан

При организации электропитания аппаратуры связи широкое применение находят аккумуляторные установки: их применяют для обеспечения бесперебойности и надлежащего качества электропитания оборудования связи, в том числе при перерывах внешнего электроснабжения, а также для обеспечения запуска и работы автоматики собственных электростанций и электроагрегатов. В подавляющем большинстве аккумуляторных установок используются стационарные свинцово-кислотные элементы и моноблоки.

Свинцово-кислотные аккумуляторы: за и против

Преимущественное применение свинцово-кислотных аккумуляторов объясняется целым рядом их достоинств.

  1. Во-первых, диапазон емкостей аккумуляторов находится в пределах от единиц ампер-часов до десятков килоампер-часов, что позволяет обеспечивать комплектацию батарей любого необходимого резерва.
  2. Во-вторых, соотношение между конечными зарядным и разрядным напряжениями при зарядах и разрядах свинцово-кислотных аккумуляторов имеет наименьшее значение из всех электрохимических систем источников тока, что позволяет обеспечивать низкий перепад напряжения на нагрузке во всех режимах работы электропитающей установки.
  3. В-третьих, свинцово-кислотные аккумуляторы отличаются низкой величиной саморазряда и возможностью сохранения заряда (емкости) при длительном подзаряде.
  4. В-четвертых, свинцово-кислотные аккумуляторы обладают сравнительно низким внутренним сопротивлением, что обуславливает достаточную стабильность напряжения питания при динамических изменениях сопротивления нагрузки.

Вместе с тем свинцово-кислотным аккумуляторам присущи недостатки, ограничивающие сферу их применения и усложняющие организацию их эксплуатации.

Из-за низкой удельной плотности запасаемой энергии свинцово-кислотные аккумуляторы имеют достаточно большие массогабаритные параметры. Однако для стационарного применения этот показатель не имеет главенствующего значения в отличие от применения аккумуляторов для питания мобильных устройств.

Поскольку в установках свинцово-кислотных аккумуляторов происходит газообразование, для обеспечения взрывобезопасности должна быть налажена естественная или принудительная вентиляция — в зависимости от условий применения и типа аккумуляторов. По этой же причине аккумуляторные установки нельзя размещать в герметичных шкафах, отсеках и т.д.

Разряженные свинцово-кислотные аккумуляторы требуют немедленного заряда. В противном случае переход мелкокристаллического сульфата свинца на поверхности электродов в крупнокристаллическую фазу может привести к безвозвратной потере емкости аккумуляторов. В связи с этим при длительном хранении такие аккумуляторы (кроме сухозаряженных) необходимо периодически дозаряжать.

Типы аккумуляторов

По исполнению

Согласно классификации МЭК (стандарт МЭК 50 (486)-1991) свинцово-кислотные аккумуляторы выпускаются в открытом и закрытом исполнении.

Открытые аккумуляторы — это аккумуляторы, имеющие крышку с отверстием, через которое могут удаляться газообразные продукты, заливаться электролит, производиться замер плотности электролита. Отверстия могут быть снабжены системой вентиляции.

Закрытые аккумуляторы — это аккумуляторы, закрытые в обычных условиях работы, но снабженные устройствами, позволяющими выделяться газу, когда внутреннее давление превышает установленное значение. Дополнительная доливка воды в такие аккумуляторы невозможна. Эти аккумуляторы остаются закрытыми, имеют низкое газообразование при соблюдении условий эксплуатации, указанных изготовителем, и предназначены для работы в исходном герметизированном состоянии на протяжении всего срока службы. Их еще называют аккумуляторами с регулируемым клапаном, герметизированными или безуходными.

В свинцово-кислотных аккумуляторах во всех режимах их работы, в том числе и при разомкнутой цепи нагрузки (холостой ход), происходит сульфатация поверхности электродов и газообразование с расходом на эти реакции воды, входящей в состав электролита. Это вынуждает при эксплуатации обычных открытых аккумуляторов производить периодический контроль уровня и плотности электролита, доливку дистиллированной воды с проведением уравнительных зарядов, что является довольно трудоемким процессом.

В герметизированных аккумуляторах за счет применения материалов с пониженным содержанием примесей, иммобилизации электролита и других конструктивных особенностей интенсивность сульфатации и газообразования существенно снижена, что позволяет размещать такие аккумуляторы вместе с питаемым оборудованием.

По конструкции электродов

Область применения и особенности эксплуатации свинцово-кислотных аккумуляторов определяются их конструкцией. По типу конструкции положительных электродов (пластин) различают следующие типы аккумуляторов:

  • с электродами большой поверхности (по классификации немецкого стандарта DIN VDE 510 — GroE);
  • с панцирными (трубчатыми) положительными электродами (по классификации DIN — OPzS и OPzV);
  • с намазными и стержневыми положительными электродами (по классификации DIN — Ogi).

Герметизированные аккумуляторы, как правило, имеют намазные положительные и отрицательные электроды (за исключением аккумуляторов OPzV).

Критерии выбора

При выборе типа стационарного свинцово-кислотного аккумулятора, наиболее пригодного для конкретной области применения, необходимо руководствоваться следующими критериями:

  • режим разряда и отдаваемая при этом емкость;
  • особенности размещения;
  • особенности эксплуатации;
  • срок службы;
  • стоимость.

Режим разряда

При выборе аккумуляторов для определенного режима разряда следует учитывать, что при коротких режимах разряда коэффициент отдачи аккумуляторов по емкости меньше единицы. При одинаковой емкости отдача элементов с электродами большой поверхности выше в два раза, чем для элементов с панцирными электродами, и в полтора раза — чем для элементов с намазными электродами.

Стоимость

Стоимость аккумулятора зависит от его типа: как правило, аккумуляторы с электродами большой поверхности дороже панцирных, а намазные — дешевле и тех и других. Герметизированные аккумуляторы стоят больше, чем открытые.

Срок службы

Самыми долговечными при соблюдении правил эксплуатации являются аккумуляторы с электродами большой поверхности, для которых срок службы составляет 20 и более лет. Второе место по сроку службы занимают аккумуляторы с панцирными электродами — примерно 16-18 лет. Срок службы аккумуляторов с намазными электродами достигает 10-12 лет. Примерно такие же сроки эксплуатации имеют герметизированные аккумуляторы.

Однако ряд производителей выпускает герметизированные аккумуляторы и с меньшим сроком службы, но более дешевые. По классификации европейского объединения производителей аккумуляторов EUROBAT эти герметизированные аккумуляторы подразделяются на 4 класса по характеристикам и сроку службы:

  • более 12 лет;
  • 10-12 лет;
  • 6-9 лет;
  • 3-5 лет.

Аккумуляторы с короткими сроками службы, как правило, дешевле остальных и предназначены в основном для использования в качестве резервных источников тока в установках бесперебойного питания переменным током (UPS) и на временных объектах связи.

Следует учитывать, что указанные выше значения срока службы соответствуют средней температуре эксплуатации 20 °С. При увеличении температуры эксплуатации на каждые 10 °С за счет увеличения скорости электрохимических процессов в аккумуляторах их срок службы будет сокращаться в 2 раза.

Размещение

По величине занимаемой площади при эксплуатации преимущество имеют герметизированные аккумуляторы. За ними в порядке возрастания занимаемой площади следуют аккумуляторы открытых типов с намазными электродами, панцирными электродами и с электродами большой поверхности.

Размещать герметизированные аккумуляторы при эксплуатации, как правило, допускается и в вертикальном, и в горизонтальном положении — это позволяет более экономно использовать площадь под размещение электрооборудования. При горизонтальном размещении герметизированных аккумуляторов, если нет других предписаний производителя, аккумуляторы устанавливаются таким образом, чтобы пакеты электродных пластин занимали вертикальное положение.

Эксплуатация

Минимальных трудовых затрат при эксплуатации требуют герметизированные аккумуляторы. Остальные типы аккумуляторов требуют больших трудозатрат обслуживающего персонала, особенно те устройства, у которых величина примеси сурьмы в положительных решетках превышает 3%.

Качество сборки, а также укупорка соединения крышки с транспортировочной пробкой (для аккумуляторов открытых типов) или предохранительным клапаном (для герметизированных аккумуляторов) должны обеспечивать герметизацию аккумуляторов при избыточном или пониженном на 20 кПа (150 мм рт. ст.) атмосферном давлении и исключать попадание внутрь атмосферного кислорода и влаги, способных ускорять сульфатацию электродов и коррозию токосборов и борнов у сухозаряженных аккумуляторов при хранении, а также исключать выход изнутри кислоты и аэрозолей при их эксплуатации. Для герметизированных аккумуляторов, кроме того, качество укупорки должно обеспечивать нормальные условия рекомбинации кислорода и ограничивать выход газа при заданных изготовителем эксплуатационных режимах работы.

Читайте также:  Как зарядить мото аккумулятор 6 вольт

Электрические характеристики

Емкость

Основным параметром, характеризующим качество аккумулятора при заданных массогабаритных показателях, является его электрическая емкость, определяемая по числу ампер-часов электричества, получаемого при разряде аккумулятора определенным током до заданного конечного напряжения.

По классификации ГОСТ Р МЭК 896-1-95, номинальная емкость стационарного аккумулятора (С10) определяется по времени его разряда током десятичасового режима разряда до конечного напряжения 1,8 В/эл. при средней температуре электролита при разряде 20 °С. Если средняя температура электролита при разряде отличается от 20 °С, полученное значение фактической емкости (Сф) приводят к температуре 20 °С, используя формулу:

где z — температурный коэффициент емкости, равный 0,006 °С -1 (для режимов разряда более часа) и 0,01 °С -1 (для режимов разряда, равных одному часу и менее); t — фактическое значение средней температуры электролита при разряде, °С.

Емкость аккумуляторов при более коротких режимах разряда меньше номинальной и при температуре электролита (20 ± 5) °С для аккумуляторов с разными типами электродов должна быть не менее указанных в таблице значений (с учетом обеспечения приемлемых пределов изменения напряжения на аппаратуре связи).

Как правило, при вводе в эксплуатацию аккумуляторов с малым сроком хранения на первом цикле разряда батарея должна отдавать не менее 95% емкости, указанной в таблице для 10-, 5-, 3- и 1-часового режимов разряда, а на 5-10-м цикле разряда (в зависимости от предписания изготовителя) -не менее 100% емкости, указанной в таблице для 10-, 5-, 3-, 1- и 0,5-часового режимов разряда.

При выборе аккумуляторов следует обращать внимание на то, при каких условиях задается изготовителем значение номинальной емкости. Если значение емкости задается при более высокой температуре, то для сравнения данного типа аккумулятора с другими необходимо предварительно пересчитать емкость на температуру 20 °С. Если значение емкости задается при более низком конечном напряжении разряда, необходимо пересчитать емкость по данным разряда аккумуляторов постоянным током, приводимую в эксплуатационной документации или рекламных данных производителя для данного режима разряда, до конечного напряжения, указанного в таблице.

Кроме того, при оценке аккумулятора следует учитывать исходное значение плотности электролита, при которой задается емкость: если исходная плотность повышена, то весьма вероятно, что срок службы аккумулятора сократится.

Пригодность к буферной работе

Другим параметром, характеризующим стационарные свинцово-кислотные аккумуляторы, является их пригодность к буферной работе. Это означает, что предварительно заряженная батарея, подключенная параллельно с нагрузкой к выпрямительным устройствам, должна сохранять свою емкость при указанном изготовителем напряжении подзаряда и заданной его нестабильности. Обычно напряжение подзаряда Uпз указывается для каждого типа аккумулятора и находится в пределах 2,18-2,27 В/эл. (при 20 °С). При эксплуатации с другими климатическими условиями следует учитывать температурный коэффициент изменения напряжения подзаряда.

Нестабильность подзарядного напряжения для основных типов аккумуляторов не должна превышать 1%, что накладывает определенные требования на выбор выпрямительных устройств при проектировании электропитающих установок связи.

При буферной работе для достижения приемлемого срока службы свинцово-кислотных аккумуляторов необходимо не превышать допустимый ток их заряда, который задается различными производителями в пределах 0,1-0,3 С10. При этом следует помнить, что ток заряда аккумуляторов с напряжением, превосходящим 2,4 В/эл., не должен превышать величину 0,05 С10.

Разброс напряжения элементов

Важным параметром, определяемым технологией изготовления аккумуляторов, является разброс напряжения отдельных элементов в составе батареи при заряде, подзаряде и разряде. Для открытых типов аккумуляторов этот параметр задается изготовителем, как правило, в пределах ± 2% от среднего значения. При коротких режимах разряда (1-часовом и менее) разброс напряжений не должен превышать +5%. Обычно для аккумуляторов с содержанием более 2% сурьмы в основе положительных электродов разброс напряжений отдельных элементов в батарее значительно ниже вышеуказанного и не приводит к осложнениям в процессе эксплуатации аккумуляторных установок.

Для аккумуляторов с меньшим содержанием сурьмы в основе положительных электродов или с безсурьмянистыми сплавами указанный разброс напряжения элементов значительно больше и в первый год после ввода в действие может составлять +10% от среднего значения с последующим снижением в процессе эксплуатации.

Отсутствие тенденции к снижению величины разброса напряжения в течение первого года после ввода в действие или увеличение разброса напряжения при последующей эксплуатации свидетельствует о дефектах устройства или о нарушении условий эксплуатации.

Особенно опасно длительное превышение напряжения на отдельных элементах в составе батареи, превышающее 2,4 В/эл., поскольку это может привести к повышенному расходу воды в отдельных элементах при заряде или подзаряде батареи и к сокращению срока ее службы или повышению трудоемкости обслуживания (для аккумуляторов открытых типов это означает более частые доливки воды). Кроме того, значительный разброс напряжения элементов в батарее может привести к потере ее емкости вследствие чрезмерно глубокого разряда отдельных элементов при разряде батареи.

Саморазряд

Качество технологии изготовления аккумуляторов оценивается также и по такой характеристике, как саморазряд.

Саморазряд (по определению ГОСТ Р МЭК 896-1-95 — сохранность заряда) определяется как процентная доля потери емкости бездействующим аккумулятором (при разомкнутой внешней цепи) при хранении в течение заданного промежутка времени при температуре 20 °С. Этот параметр определяет продолжительность хранения батареи в промежутках между очередными зарядами, а также величину подзарядного тока заряженной батареи.

Величина саморазряда в значительной степени зависит от температуры электролита, поэтому для уменьшения подзарядного тока батареи в буферном режиме ее работы или для увеличения времени хранения батареи в бездействии целесообразно выбирать помещения с пониженной средней температурой.

Обычно среднесуточный саморазряд открытых типов аккумуляторов при 90-суточном хранении при температуре 20 ° С не должен превышать 1% номинальной емкости, с ростом температуры на 10 °С это значение удваивается. Среднесуточный саморазряд герметизированных аккумуляторов при тех же условиях хранения, как правило, не должен превышать 0,1% номинальной емкости.

Внутреннее сопротивление и ток короткого замыкания

Для расчета цепей автоматики и защиты аккумуляторных батарей ГОСТ Р МЭК 896-1-95 регламентирует такие характеристики аккумуляторов как их внутреннее сопротивление и ток короткого замыкания. Эти параметры определяются расчетным путем по установившимся значениям напряжения при разряде батарей токами достаточно большой величины (обычно равными 4 С10 и 20 С10) и должны приводиться в технической документации производителя. По этим данным может быть рассчитан такой выходной динамический параметр электропитающей установки (ЭПУ), как нестабильность ее выходного напряжения при скачкообразных изменениях тока нагрузки, поскольку в буферных ЭПУ выходное сопротивление установки в основном определяется внутренним сопротивлением батареи.

«Бумажная» версия статьи содержит сводную таблицу характеристик аккумуляторов (стр. 126-128). Так как формат таблицы очень неудобен для размещения на сайте, здесь эта таблица не приводится.

Об авторах: О.П. Чекстер, начальник лаборатории ФГУП ЛОНИИС; И.М. Джосан, ведущий инженер ФГУП ЛОНИИС

Источник

Как отличить аккумуляторные батарейки от обычных

Когда встает вопрос, как отличить обычную батарейку от аккумуляторной перезаражаемой, нередко возникают сложности. Не удивительно, ведь внешнее сходство этих элементов питания очевидно: цвет и размер практически не отличается. Чтобы по ошибке не выбросить достаточно дорогой аккумулятор в урну или не подключить к зарядке простую батарейку (когда, при лучшем раскладе, ничего не будет, а в случае неблагоприятного исхода может случиться возгорание), нужно знать некоторые нюансы.

Интернет магазин хоз товаров предлагает большой выбор хозяйственных товаров для дома. Самый большой ассортимент хозяйственных товаров для дома по самым низким ценам в интернет-магазине 2000 мелочей!

Внешний вид

Очень просто определиться, какое именно устройство сейчас в руках, когда на нем имеется этикетка:

  1. На перезаряжаемых аккумуляторах должна быть надпись Rechargeable, на простых батарейках – Do not recharge (что переводится как «не заряжать»). Иногда на обычных батарейках с повышенной емкостью встречается надпись Alkaline.
  2. На аккумуляторах указывается емкость. Данная маркировка наносится в виде цифр. В конце значится надпись mAh, она свидетельствует, что этот элемент – аккумулятор.

Внимание: на перезаряжаемых батарейках встречаются такие обозначения: Li-Ion, что значит литий-ионный аккумулятор, Ni-Cd – никель-кадмиевый и Ni-Mh – никель-металлогидридный.

Как правило, внешних признаков вполне достаточно, чтобы понять, какой это вид батареи. По стоимости перезаряжаемые дороже простых.

Как же быть, когда наклейка отсутствует, или на ней ничего подобного не написано? Тогда на помощь придет такой прибор, как мультиметр. При измерении результаты будут разными: для обычных батареек напряжение составит 1,6V, для аккумуляторных – не более 1,2V.

Внимание: иногда может встретиться аккумулятор повышенного напряжения, его значение при измерении составит 1,6V.

Разновидности аккумуляторов

Каждый вид перезаряжаемой батареи имеет свои особенности:

  • Li-Ion – литий-ионный – практически отсутствует эффект памяти, из-за чего заряжать можно когда угодно. Этот вариант самый дорогостоящий;
  • Ni-Mh – никель-металлогидридный – устройство средней емкости. Присутствует незначительный эффект памяти. Хорошо переносит низкий температурный режим. В ценовой категории относится к среднему сегменту;
  • Ni-Cd – никель-кадмиевый – быстро теряет заряд при низких температурах. Характерная особенность – значительная память, вследствие чего повторный заряд возможен только после полной разрядки. Самая дешевая разновидность.

Литиевая батарейка от других типов устройства отличается внешне. На ней можно увидеть маркировку Li-Ion.

Как отличить аккумуляторные батарейки от обычных

  • Adidas
  • Apple
  • Bvlgari
  • Gucci
  • JBL
  • Chanel
  • LOL
  • Samsung
  • Versace
  • Xiaomi
  • Мария к записи Как и чем заменить дрожжи
  • Аноним к записи Масло Bardahl как отличить подделку от оригинала
  • Аноним к записи Коньяк “Коктебель” как отличить подделку
  • Александр к записи Как отличить оригинальное моторное масло ROLF от поддельного
  • Юрий к записи Как отличить подделку кранов Bugatti
  • ПРОВЕРКА
    • Батч-код парфюмерии и косметики
    • Штрих-код товаров (общий)
    • Штрих-код лекарств
    • Штрих-код алкоголя
    • Штрих-код сигарет
    • Штрих-код масла
    • Диагностическая карта автомобиля в ЕАИСТО ГИБДД
  • Красота
    • Парфюмерия
    • Косметика
  • Одежда
    • Обувь
    • Верхняя одежда
    • Штаны
  • Аксессуары
    • Сумки
    • Часы
    • Ювелирные изделия
    • Очки
  • Техника
    • Apple
    • Смартфоны
    • Xiaomi
    • Музыка
    • Инструмент
  • Здоровье
    • Продукты питания
    • Похудеть
    • Табак и аналоги
    • Лекарства
    • Алкоголь
  • Авто
    • Масло
    • Расходники
    • Документы
  • Семья
    • Игрушки
    • Спальня
    • Деньги

Наборы инструментов SATA как отличить подделку

Как отличить настоящую бензопилу Stihl от подделок

Как отличить оригинальную болгарку Makita от подделки

Privacy Overview

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

Cookie Duration Description
cookielawinfo-checbox-analytics 11 months This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category «Analytics».
cookielawinfo-checbox-functional 11 months The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category «Functional».
cookielawinfo-checbox-others 11 months This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category «Other.
cookielawinfo-checkbox-necessary 11 months This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category «Necessary».
cookielawinfo-checkbox-performance 11 months This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category «Performance».
viewed_cookie_policy 11 months The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Источник

Что за аккумулятор sealed rechargeable battery

Группа: Members
Сообщений: 608
Регистрация: 15.4.2004
Из: Великий Новгород
Пользователь №: 689
Спасибо сказали: 0

Нужна достоверная инфа по данной теме.

Вот что я нарыл в инете:
Аккумуляторы:
Герметичные свинцово-кислотные аккумуляторы.
В международной интерпретации принято обозначение в виде SEALED LEAD ACID BATTERY или сокращенно SLA.
Свинцово-кислотный аккумулятор, изобретенный в 1859 году, был первым заряжаемым аккумулятором, предназначенным для использования в коммерческих целях. Сегодня заливаемые свинцово-кислотные аккумуляторы используются в автомобилях и оборудовании, требующим отдачи большой мощности. В портативных приборах используются герметичные аккумуляторы или аккумуляторы с регулирующим клапаном, открывающимся при увеличении давления внутри корпуса выше заданного порогового значения.
Существует несколько технологий изготовления SLA-аккумуляторов: Gelled Electrolite (GEL), Absorptive Glass Mat (AGM), а также различные гибридные технологии, использующие один или несколько способов улучшения параметров аккумуляторов. При изготовлении по GEL-технологии путем добавления в электролит специальных веществ обеспечивается его переход в желеобразное состояние через несколько часов после заполнения аккумулятора. В толще желеобразного электролита происходит образование пор и раковин, имеющих значительный объем и площадь поверхности, где происходит встреча и рекомбинация молекул кислорода и водорода с образованием воды. В результате количество электролита остается неизменным и доливка воды не требуется в течение всего срока службы. При технологии AGM использует пропитанный жидким электролитом пористый заполнитель из стекловолокна. Микропоры этого материала заполнены электролитом не полностью. Свободный объем используется для рекомбинации газов.
SLA-аккумуляторы обычно используется в случаях, когда требуется отдача большой мощности, вес не критичен, а стоимость должна быть минимальной. Диапазон значений емкости для портативных приборов лежит в диапазоне от 1 до 30 A*час. Большие SLA-аккумуляторы для стационарных применений имеют емкость от 50 до 200 A*час.
SLA-аккумуляторы не подвержены «эффекту памяти». Без всякого вреда допускается оставлять аккумулятор в зарядном устройстве на плавающем заряде в течение длительного времени. Сохранение заряда — лучшее среди заряжаемых аккумуляторов. Принимая во внимание, что NiCd аккумуляторы саморазряжаются за три месяца на 40 % от запасенной энергии, SLA-аккумуляторы саморазряжаются на то же самое количество за один год. Эти аккумуляторы недороги, но стоимость их эксплуатации может быть выше, чем у NiCd, если в течение срока эксплуатации требуется большое количество циклов заряд/разряд.
Для SLA-аккумуляторов неприемлем режим быстрого заряда. Типовое время заряда — от 8 до 16 часов.
В отличие от NiCd, SLA-аккумуляторы «не любят» глубоких циклов разряда и хранения в разряженном состоянии. Это приводит к сульфатации пластин аккумулятора, в результате чего их заряд становится трудным, если не невозможным. Фактически, каждый цикл заряда/разряда отнимает у аккумулятора небольшое количество емкости. Эта потеря очень небольшая, если аккумулятор находится в хорошем состоянии, но становится более ощутима, как только емкость понижается ниже 80 % от номинальной. Это в различной степени справедливо и для аккумуляторов других электрохимических систем. Чтобы ослабить влияние глубокого разряда, можно использовать SLA-аккумулятор немного большего размера.
В зависимости от глубины разряда и температуры эксплуатации, SLA-аккумулятор обеспечивает от 200 до 500 циклов заряд/разряд. Основная причина относительно небольшого количества циклов — расширение положительных пластин в результате внутренних химических реакций. Это явление наиболее сильно проявляется при более высоких температурах. SLA-аккумуляторы обладают относительно низкой плотностью энергии по сравнению с другими аккумуляторами и, вследствие этого, непригодны для компактных устройств. Это становится особенно критичным при низких температурах, так как способность отдавать ток в нагрузку при низких температурах значительно уменьшается. Как ни парадоксально, SLA-аккумулятор весьма хорошо заряжается с чередующимися импульсами разряда. В течение этих импульсов ток разряда может достигать значения более 1C (номинальной емкости).
Из-за высокого содержания свинца, SLA-аккумуляторы при неправильной утилизации экологически вредны.
Никель-кадмиевые аккумуляторы.
В международной интерпретации принято обозначение в виде NICKEL-CADMIUM BATTERY или сокращенно NiCd.
Технология изготовления щелочных никелевых аккумуляторов была впервые предложена в 1899 году. Используемые в них материалы были в то время дорогими и аккумуляторы применялись только при изготовлении специальной техники. В 1932 году в пористый пластинчатый никелевый электрод были добавлены активные вещества, а в 1947 году было положено начало исследованиям герметичных NiCd-аккумуляторов, в которых внутренние газы, выделяющиеся во время заряда, рекомбинировались внутри, а не выпускались наружу как в предыдущих вариантах. Эти усовершенствования привели к современному герметичному NiCd-аккумулятору, который и используется сегодня.
NiCd-аккумулятор — ветеран на рынке мобильных и портативных устройств. Отлаженная технология и надежная работа обеспечили ему широкое распространение для электропитания переносных радиостанций, медицинского оборудования, профессиональных видеокамер, регистрирующих устройств, мощных ручных инструментов и другой портативной техники и оборудования. Появление аккумуляторов более новых электрохимических систем хотя и привело к уменьшению использования NiCd-аккумуляторов, однако, выявление недостатков новых видов аккумуляторов привело к возобновлению интереса к NiCd-аккумуляторам.
Их основные достоинства:
• быстрый и простой метод заряда;
• длительный срок службы — свыше тысячи циклов заряда/разряда при соблюдении правил эксплуатации и обслуживания;
• превосходная нагрузочная способность, даже при низких температурах. NiCd-аккумулятор можно перезаряжать при низких температурах;
• простое хранение и транспортировка. NiCd-аккумуляторы принимаются большинством воздушных грузовых компаний;
• легкое восстановление после понижения емкости и длительного хранения;
• низкая чувствительность к неправильным действиям потребителя;
• доступная цена;
• широкий диапазон типоразмеров.
NiCd-аккумулятор подобен сильному и молчаливому работнику, который интенсивно трудится и при этом не доставляет больших хлопот. Для него предпочтителен быстрый заряд по сравнению с медленным и импульсный заряд по сравнению с зарядом постоянным током. Улучшение эффективности достигается распределением импульсов разряда между импульсами заряда. Этот метод заряда, обычно называемый реверсивным, восстанавливает структуру кадмиевых анодов, устраняя тем самым «эффект памяти», и увеличивает эффективность и срок эксплуатации аккумулятора. Кроме этого, реверсивный заряд позволяет проводить заряд большим током за меньшее время, т.к. помогает рекомбинации газов, выделяющихся во время заряда. В результате аккумулятор меньше нагревается и более эффективно заряжается по сравнению со стандартным методом заряда постоянным током. Исследования, проведенные в Германии, показали, что реверсивный заряд добавляет около 15 % к сроку службы NiCd-аккумулятора.
Для NiCd-аккумуляторов вредно нахождение в зарядном устройстве в течение нескольких дней. Фактически, NiCd аккумуляторы — это единственный тип аккумуляторов, который выполняет свои функции лучше всего, если периодически подвергается полному разряду, а если он не производится, то аккумуляторы постепенно теряют эффективность из-за формирования больших кристаллов на пластинах элемента, явления, называемого «эффектом памяти». Для всей остальной разновидности аккумуляторов по электрохимической системе предпочтителен неглубокий разряд.
Среди недостатков NiCd-аккумулятора следует отметить:
• наличие «эффекта памяти» и, вследствие этого, необходимость полной периодической разрядки для сохранения эксплуатационных свойств;
• высокий саморазряд (до 10 % в течение первых 24-х часов), поэтому аккумуляторы должны храниться в разряженном состоянии;
• аккумулятор содержит кадмий и требует специальной утилизации. В ряде стран по этой причине в настоящее время он уже запрещен к использованию.
Никель-металлгидридные аккумуляторы. В международной интерпретации принято обозначение в виде NICKEL METAL-HYDRIDE BATTERY или сокращенно NiMH.
Исследования в области технологии изготовления NiMH-аккумуляторов были начаты в семидесятые годы с целью преодоления недостатков никель-кадмиевых аккумуляторов. Однако применяемые в то время металлгидридные соединения были нестабильны и требуемые характеристики не были достигнуты. В результате разработки в области NiMH-аккумуляторов замедлились. Новые металлгидридные соединения, достаточно устойчивые для применения в аккумуляторах, были разработаны в 1980 году. Начиная с конца восьмидесятых годов, технология изготовления NiMH-аккумуляторов постоянно совершенствовалась, и плотность запасаемой ими энергии возрастала.
Некоторые отличительные преимущества сегодняшних NiMH-аккумуляторов:
• примерно на 40 — 50 % большая удельная емкость по сравнению со стандартными NiCd-аккумуляторами;
• меньшая склонность к «эффекту памяти», чем у NiCd. Периодические циклы восстановления должны выполняться реже;
• меньшая токсичность. NiMH-технология считается экологически чистой.
К сожалению, NiMH-аккумуляторы имеют недостатки и по некоторым параметрам проигрывают NiCd:
• число циклов заряд/разряд для NiMH-аккумуляторов примерно равно 500. Предпочтителен скорее поверхностный, чем глубокий разряд. Долговечность аккумуляторов непосредственно связана с глубиной разряда;
• NiMH-аккумулятор по сравнению с NiCd выделяет значительно большее количество тепла во время заряда и требует более сложного алгоритма для обнаружения момента полного заряда, если не используется контроль по температуре. Большинство NiMH-аккумуляторов оборудовано внутренним температурным датчиком для получения дополнительного критерия обнаружения полного заряда. NiMH-аккумулятор не может заряжаться так быстро, как NiCd; время заряда обычно вдвое больше, чем у NiCd. Плавающий заряд должен быть более контролируемым, чем для NiCd-аккумуляторов;
• рекомендуемый ток разряда для NiMH-аккумуляторов — от 0.2C до 0.5C — значительно меньше, чем для NiCd. Этот недостаток не критичен, если требуемый ток нагрузки низок. Для применений, требующих высокого тока нагрузки или имеющих импульсную нагрузку, типа переносных радиостанций и мощных ручных инструментов, рекомендуются NiCd-аккумуляторы;
• саморазряд NiMH-аккумуляторов — в 1.5-2 раза выше, чем у NiCd;
• цена NiMH-аккумуляторов примерно на 30 % выше, чем NiCd. Однако это не главная проблема, если пользователю требуется большая емкость и небольшие габариты.
Технология изготовления никель-металлгидридных аккумуляторов постоянно совершенствуется. Так, например, фирма GP Batteries International Limited изготавливает NiMH-аккумуляторы для сотовых телефонов фирмы Motorola со следующими характеристиками: количество циклов заряда/разряда — 1000, отсутствие «эффекта памяти» и необходимости разряда аккумулятора перед зарядом.
Литий-ионные аккумуляторы. В международной интерпретации принято обозначение в виде LITHIUM ION BATTERY или сокращенно Li-ion.
Литий является самым легким металлом и обладает сильно отрицательным электрохимическим потенциалом. Благодаря этому литий характеризуется наибольшей теоретической удельной электрической энергией.
Первые работы по литиевым аккумуляторам относятся к 1912 году. Однако только в 1970 году впервые были изготовлены коммерческие экземпляры литиевых источников тока. Попытки разработать перезаряжаемые литиевые источники тока предпринимались в 80-е годы, но были неудачными из-за невозможности обеспечения приемлемого уровня безопасности при их эксплуатации.
В результате исследований, проведенных в 80-х годах, было установлено, что в ходе циклирования источника тока с металлическим литиевым электродом возможно возникновение короткого замыкания внутри литиевого источника тока. При этом температура внутри аккумулятора может достигать температуры плавления лития. В результате бурного химического взаимодействия лития с электролитом происходит взрыв. Поэтому, например, большое количество литиевых аккумуляторов, поставленных в Японию в 1991г., было возвращено производителям после того, как в результате взрывов элементов питания сотовых телефонов от ожогов пострадали несколько человек.
В процессе создания безопасного источника тока на основе лития, исследования привели к замене в аккумуляторе неустойчивого при циклировании металлического лития на его соединения с другими веществами. Эти электродные материалы обладают в несколько раз меньшей по сравнению с литием удельной электрической энергией, однако, аккумуляторы на их основе являются достаточно безопасными при условии соблюдения некоторых мер предосторожности в ходе заряда/разряда. В 1991 году, фирма Sony начала коммерческое производство литий-ионных аккумуляторов и в настоящее время она является одним из самых крупных поставщиков.
Для обеспечения безопасности и долговечности, каждый аккумулятор должен быть оборудован электрической схемой управления для того, чтобы ограничить пиковое напряжение каждого элемента во время заряда и предотвратить понижение напряжения элемента при разряде ниже допустимого уровня. Кроме того, должен быть ограничен максимальный ток заряда и разряда и должна контролироваться температура элемента. При соблюдении этих предосторожностей возможность образования металлического лития на поверхности электродов в ходе эксплуатации (что наиболее часто приводит к нежелательным последствиям) практически устранена.
По материалу отрицательного электрода литий-ионные аккумуляторы можно разделить на два основных типа: с отрицательным электродом на основе кокса (фирма Sony) и на основе графита (большинство других изготовителей). Источники тока с отрицательным электродом на основе графита имеют более плавную разрядную кривую с резким падением напряжения в конце разряда, по сравнению с более пологой разрядной кривой аккумулятора с коксовым электродом. Поэтому, в целях получения максимально возможной емкости, конечное напряжение разряда аккумуляторов с отрицательным коксовым электродом обычно устанавливают ниже (до 2.5 V), по сравнению с аккумуляторами с графитовым электродом (до 3.0 V). Кроме того, аккумуляторы с отрицательным графитовым электродом способны обеспечить более высокий ток нагрузки и меньший нагрев во время заряда и разряда, чем аккумуляторы с отрицательным коксовым электродом. Напряжение окончания разряда 3.0 V для аккумуляторов с отрицательным графитовым электродом является его основным преимуществом, так как полезная энергия в этом случае сконцентрирована внутри плотного верхнего диапазона напряжения, упрощая тем самым проектирование портативных устройств.
Производители непрерывно совершенствуют технологию Li-ion аккумуляторов. Идет постоянный поиск и совершенствование материалов электродов и состава электролита. Параллельно предпринимаются меры для повышения безопасности Li-ion аккумуляторов, как на уровне отдельных источников тока, так и на уровне управляющих электрических схем. Поскольку эти аккумуляторы обладают очень высокой удельной энергией, то необходимо соблюдать осторожность при обращении с ними и тестировании: не допускать короткого замыкания аккумулятора, перезаряда, разрушения, разборки, подключения в обратной полярности, не подвергать их воздействию высоких температур. Нарушение этих правил может привести к физическому и материальному ущербу.
Литий-ионные аккумуляторы являются наиболее перспективными аккумуляторами в настоящее время и начинают широко применяться в портативных компьютерах и мобильных устройствах связи. Это обусловлено:
• высокой плотностью электрической энергии, по крайней мере, вдвое большей, чем у NiCd того же размера, а значит и вдвое меньшими габаритами при той же самой емкости;
• большим числом циклов заряд/разряд (от 500 до 1000);
• хорошей работой на больших токах нагрузки, что необходимо, например, при использовании данных аккумуляторов в сотовых телефонах и портативных компьютерах;
• достаточно низким саморазрядом (2-5% в месяц плюс примерно 3 % на питание встроенной электронной схемы защиты);
• отсутствием каких-либо требований к обслуживанию, за исключением необходимости предварительного заряда перед длительным хранением;
• позволяют проводить заряд при любой степени разряда аккумулятора.

Но и здесь примешивается «ложка дегтя»: для аккумуляторов некоторых производителей гарантируется работа только при положительных температурах, высокая цена (примерно вдвое превышающая цену NiCd-аккумуляторов) и подверженность процессу старения, даже в случае, если аккумулятор не используется. Ухудшение параметров наблюдается примерно после одного года с момента изготовления. После двух лет службы аккумулятор часто становится неисправным. Поэтому не рекомендуется хранить Li-ion аккумуляторы в течение длительного времени. Максимально используйте их, пока они новые.
Кроме этого, Li-ion-аккумуляторы должны храниться в заряженном состоянии. При длительном хранении в глубоко разряженном состоянии они выходят из строя.
Li-ion-аккумуляторы сегодня являются наиболее дорогими. Совершенствование технологии их производства и замена оксида кобальта на менее дорогой материалом может привести к уменьшению их стоимости до 50 % в течение ближайших нескольких лет.
Литий-полимерные аккумуляторы.
В международной интерпретации принято обозначение в виде LITHIUM POLIMER BATTERY или сокращенно Li-Pol.
Литий-полимерные аккумуляторы — последняя новинка в литиевой технологии. Имея примерно такую же плотность энергии, что и Li-ion-аккумуляторы, литий-полимерные допускают изготовление в различных пластичных геометрических формах, нетрадиционных для обычных аккумуляторов, в том числе достаточно тонких по толщине, и способных заполнять любое свободное место в разрабатываемой аппаратуре.
Этот аккумулятор, называемый также «пластиковым», конструктивно подобен Li-ion, но имеет гелевый электролит. В результате становится возможной упрощение конструкции элемента, поскольку любая утечка электролита невозможна.
Li-pol-аккумуляторы начинают применяться в портативных компьютерах и сотовых телефонах. Например, сотовые телефоны Panasonic GD90 и Ericsson T28s (стандарт GSM 900/1800), укомплектованы литий-полимерными аккумуляторами толщиной всего 3 мм и имеют емкость, достаточную для работы в течение 3-х часов в режиме разговора и до 90 часов в режиме ожидания.
Каталог аккумуляторов .

Сообщение отредактировал Russel — 27.8.2005, 11:08

Vovchique

Источник