Меню

Разбор блоков питания atx

Что спрятано в «сердце» ПК? Разбираем блок питания!

Здравствуй, уважаемый читатель! Уверен, если ты открыл эту статью, — ты знаешь, что из себя представляет блок питания (БП). В анатомии каждого настольного ПК, игровой консоли и ноутбука присутствует БП.

Нет, он не увеличивает FPS, не способствует производству криптовалюты, не состоит из миллиона позолоченных транзисторов и его не создают посредством новейшего технологического оборудования.

Конечно, заголовки включающие в себя словосочетание «Блок питания» не бьют рекорды и не набирают миллионы просмотров, как это делают новейшие чипы, но все-таки хочется надеть перчатки и «приоткрыть» завесу тайны, — раскурочить БП и посмотреть, что же представляет из себя каждый отдельный блок и с чем ему приходится сталкиваться в момент работы.

Некоторые компьютерные комплектующие требуют технических знаний в одноименной области, чтобы разобраться, что делает каждая из них (например, как работает ОЗУ). С блоком питания же все очевидно без слов — это, по сути, преобразователь переменного тока в постоянный, обеспечивающий бесперебойную работу всех компонентов ПК.

Моим «донором» стал знаменитый китайский Cooler Master G650M — блок питания на 650 Вт из средней ценовой категории, обладающий стандартным дизайном и общей спецификацией, встречающейся в большинстве других.

Но есть в нём и одна особенность, о которой умалчивают на многих форумах — этот БП соответствует форм-фактору ATX 12V v2.31, — а это означает, что его габариты позволяют быть установленным практически в любой системный блок.

Источник



Ремонт компьютерного блока питания — пошаговые фото и видео

Компьютерный блок питания, нуждающийся в ремонте

Пошаговый алгоритм ремонта блока питания компьютера своими руками — разбор схемы, советы по проверке разных комплектующих, фото и видео.

  1. Проверка входного сопротивления
  2. Замер напряжения
  3. Поиск схемы и замена стабилитрона
  4. Проверка и замена конденсаторов
  5. Выводы
  6. Видео о ремонте

Для примера и разбора мы рассмотрим пошаговый алгоритм диагностики и ремонта блока питания Power Man на 350 Ватт своими руками.

Проверка входного сопротивления компьютерного блока питания

Первым делом проводим внешний и внутренний осмотр. Смотрим «начинку». Нет ли каких-то сгоревших радиоэлементов? Может где-то обуглена плата или взорвался конденсатор, либо пахнет горелым кремнием? Все это учитываем при осмотре. Обязательно смотрим на предохранитель. Если он сгорел, ставим вместо него временную перемычку примерно на столько же Ампер, а потом замеряем входное сопротивление через два сетевых провода. Это можно сделать на вилке блока питания при включенной кнопке «ВКЛ». Оно не должно быть слишком маленькое, иначе при включении блока питания еще раз произойдет короткое замыкание.

Ремонт блока питания компьютера своими руками — замер напряжения

Если все хорошо, включаем наш блок питания в сеть с помощью комплектного сетевого кабеля, не забываем про кнопку включения, если она была в выключенном состоянии.

Кнопка включения на блоке питания компьютера

Кнопка включения

Далее меряем напряжение на фиолетовом проводе.

Схема распиновки компьютерного БП

Распиновка компьютерного блока питания ATX

На фиолетовом проводе отобразило 0 Вольт. Берем мультиметр и прозваниваем фиолетовый провод на землю. Земля — это провода черного цвета с надписью СОМ (сокращенно от «common», что значит «общий»). Есть также некоторые виды «земель»:

Схемы подключений в компьютерном блоке питания

Как только мы коснулись земли и фиолетового провода, мультиметр издал показал нули на дисплее. Короткое замыкание, однозначно.

Ремонта блока питания — поиск схемы и замена стабилитрона

Далее ищем схему на этот блок питания. В Сети мы нашли схему Power Man 300 Ватт. Отличия в схеме лишь в порядковых номерах радиодеталей на плате. Если уметь анализировать печатную плату на соответствие схеме, это не будет большой проблемой.

Вот сама схема на Power Man 300W. Щелкните по ней для увеличения в натуральный размер.

Как мы видим, дежурное питание (дежурка) обозначается как +5VSB:

Обозначение дежурного питания на схеме

Прямо от него идет стабилитрон номиналом в 6,3 Вольта на землю. А как вы помните, стабилитрон — это тот же самый диод, но подключается в схемах наоборот. У стабилитрона используется обратная ветвь ВАХ. Если бы стабилитрон был живой, то у нас провод +5VSB не коротил бы на массу. Предполагаем, что стабилитрон сгорел и PN переход разрушен.

  • Смотрите также, как собрать простой тестер для проверки стабилитрона

Что происходит при сгорании разных радиодеталей с физической точки зрения? Во-первых, изменяется их сопротивление. У резисторов оно становится бесконечным или, иначе говоря, уходит в обрыв. У конденсаторов оно иногда становится очень маленьким или, иначе говоря, уходит в короткое замыкание. С полупроводниками возможны оба этих варианта — как короткое замыкание, так и обрыв.

В нашем случае мы можем проверить это только одним способом, выпаяв одну или сразу обе ножки стабилитрона, как наиболее вероятного виновника короткого замыкания. Далее будем проверять пропало ли короткое замыкание между дежуркой и массой или нет. Почему так происходит?

Вспоминаем простые подсказки:

    При последовательном соединении работает правило больше большего. Иначе говоря, общее сопротивление цепи больше, чем сопротивление большего из резисторов.

  • При параллельном соединении работает обратное правило, меньше меньшего. Иначе говоря, итоговое сопротивление будет меньше, чем сопротивление резистора меньшего из номиналов.
  • Можно взять произвольные значения сопротивлений резисторов, самостоятельно посчитать и убедиться в этом. Попробуем логически поразмыслить, если у нас одно из сопротивлений параллельно подключенных радиодеталей будет равно нулю, какие показания мы увидим на экране мультиметра? Правильно, тоже равное нулю.

    До тех пор, пока мы не устраним это короткое замыкание путем выпаивания одной из ножек детали, которую мы считаем проблемной, мы не сможем определить, в какой детали у нас короткое замыкание. Дело все в том, что при звуковой прозвонке все детали, параллельно соединенные с деталью в коротком замыкании, будут у нас звониться накоротко с общим проводом!

    Пробуем выпаять стабилитрон. В ходе работы он просто развалился надвое.

    Расположение стабилитрона

    Проверяем, устранилось ли у нас короткое замыкание по цепям дежурки и массы, либо нет. Действительно, короткое замыкание пропало. Запаиваем новый стабилитрон.

    Читайте также:  Блок питания SWG сетка 150W 24V S 150 24 00000000108

    После первого включения блока питания новый стабилитрон начал пускать дым. Здесь надо бы вспомнить одно из главных правил ремонтника:

    Перекусываем сгоревший стабилитрон бокорезами и снова включаем блок питания. Так и есть, дежурка завышена: 8,5 Вольт. Конечно в этот момент мы забеспокоились о ШИМ контроллере. Однако после скачивания даташита на микросхему было выявлено, что предельное напряжение питания для ШИМ контроллера равно 16 Вольт.

    ШИМ контроллер блока питания крупным планом

    Наше предположение оказалось неверным, дело не в стабилитроне. Идём дальше.

    Ремонт блока питания пошагово — проверка и замена конденсаторов

    Проблема завышенного напряжения дежурки заключается в банальном увеличении ESR электролитических конденсаторов в цепях питания. Ищем эти конденсаторы на схеме и проверяем их. Нам понадобится ESR метр.

    ESR метр для работы

    Проверяю первый конденсатор в цепи дежурного питания.

    Расположение первого конденсатора в цепи дежурного питания на схеме

    Как выглядит первый конденсатор в цепи дежурного питания

    ESR в пределах нормы. Проверяем второй.

    Расположение второго конденсатора на схеме

    Второй конденсатор дежурного питания в БП

    Ждем, когда на экране мультиметра появится какое-либо значение, но ничего не меняется.

    Значение на экране мультиметра

    По крайней мере, один из виновников проблемы найден. Перепаиваем конденсатор на точно такой же по номиналу и рабочему напряжению, взятый с донорской платы блока питания. Здесь остановимся подробнее.

    Итак, включаем блок питания и снова замеряем напряжение на дежурке. Наученные горьким опытом уже не торопимся ставить новый защитный стабилитрон и замеряем напряжение на дежурке, относительно земли. Напряжение 12 вольт и раздается высокочастотный свист.

    Далее мы попробовали поменять конденсатор емкостью 10 мкФ. Это одна из типичных неисправностей данного блока питания

    Замеряем ESR на конденсаторе.

    Конденсатор для замера ESR

    Расположение конденсатора, у которого измеряется ESR

    Результат, как и в первом случае: прибор зашкаливает.

    Некоторые говорят, мол зачем собирать какие-то приборы, типа вздувшиеся нерабочие конденсаторы итак видно — они припухшие или вскрывшиеся розочкой.

    Пример нерабочего конденсатора

    С одной стороны, мы согласны с этим. Но это касается только конденсаторов большого номинала. Конденсаторы относительно небольших номиналов не вздуваются. В их верхней части нет насечек, по которым они могли бы раскрыться. Поэтому их просто невозможно определить на работоспособность визуально. Остается только менять их на заведомо рабочие.

    Итак, мы нашли второй нужный конденсатор и на всякий случай измерили его ESR. Оно оказалось в норме. После впаивания второго конденсатора в плату, включаем блок питания клавишным выключателем и измеряем дежурное напряжение. То, что и требовалось — 5,02 вольта.

    Измеряем все остальные напряжения на разъеме блока питания. Все соответствуют норме. Отклонения рабочих напряжений менее 5 %. Осталось впаять стабилитрон на 6,3 Вольта.

    К слову, мы долго думали, почему стабилитрон именно на 6,3 Вольта, когда напряжение дежурки равно +5 Вольт? Логичнее было бы поставить на 5,5 вольт или аналогичный, если бы он стоял для стабилизации напряжения на дежурке. Скорее всего этот стабилитрон стоит здесь как защитный, чтобы в случае повышения напряжения на дежурке выше 6,3 Вольт, он сгорел и замкнул накоротко цепь дежурки, отключив тем самым блок питания и сохранив материнскую плату от сгорания.

    Вторая функция этого стабилитрона, скорее всего, защита ШИМ-контроллера от поступления на него завышенного напряжения. Так как дежурка соединена с питанием микросхемы через достаточно низкоомный резистор, на 20 ножку питания микросхемы ШИМ поступает почти то же самое напряжение, что и на дежурке.

    Ремонт блока питания компьютера — выводы

    Итак, какие можно сделать выводы из этого ремонта:

      Все параллельно подключенные детали при измерении влияют друг на друга. Их значения активных сопротивлений считаются по правилу параллельного соединения резисторов. В случае короткого замыкания на одной из параллельно подключенных радиодеталей такое же короткое замыкание будет на всех остальных деталях, которые подключены параллельно этой.

    Для выявления неисправных конденсаторов одного визуального осмотра мало и необходимо либо менять все неисправные электролитические конденсаторы в цепях проблемного узла устройства на заведомо рабочие, либо отбраковывать путем измерения прибором ESR-метром.

  • Если вы нашли какую-либо сгоревшую деталь, не торопитесь менять её на новую, а ищите причину, которая привела к её сгоранию, иначе рискуете получить еще одну сгоревшую деталь.
  • Видео о ремонте блока питания компьютера:


    Источник

    Поговорим про ремонт блока питания компьютера своими руками

    В современном мире развитие и устаревание комплектующих персональных компьютеров происходит очень быстро. Вместе с тем один из основных компонентов ПК – блок питания форм-фактора ATX – практически не изменял свою конструкцию последние 15 лет.

    Следовательно, блок питания и суперсовременного игрового компьютера, и старого офисного ПК работают по одному и тому же принципу, имеют общие методики диагностики неисправностей.

    Материал, изложенный в этой статье, может применяться к любому блоку питания персональных компьютеров с минимумом нюансов.

    Устройство блока питания

    устройство БП

    Типовая схема блока питания ATX приведена на рисунке. Конструктивно он представляет собой классический импульсный блок на ШИМ-контроллере TL494, запускающемся по сигналу PS-ON (Power Switch On) с материнской платы. Все остальное время, пока вывод PS-ON не подтянут к массе, активен только источник дежурного питания (Standby Supply) с напряжением +5 В на выходе.

    Рассмотрим структуру блока питания ATX подробнее. Первым ее элементом является
    сетевой выпрямитель:

    сетевой выпрямитель

    Его задача – это преобразование переменного тока из электросети в постоянный для питания ШИМ-контроллера и дежурного источника питания. Структурно он состоит из следующих элементов:

    • Предохранитель F1 защищает проводку и сам блок питания от перегрузки при отказе БП, приводящем к резкому увеличению потребляемого тока и как следствие – к критическому возрастанию температуры, способному привести к пожару.
    • В цепи «нейтрали» установлен защитный терморезистор, уменьшающий скачок тока при включении БП в сеть.
    • Далее установлен фильтр помех, состоящий из нескольких дросселей (L1, L2), конденсаторов (С1, С2, С3, С4) и дросселя со встречной намоткой Tr1. Необходимость в наличии такого фильтра обусловлена значительным уровнем помех, которые передает в сеть питания импульсный блок – эти помехи не только улавливаются теле- и радиоприемниками, но и в ряде случаев способны приводить к неправильной работе чувствительной аппаратуры.
    • За фильтром установлен диодный мост, осуществляющий преобразование переменного тока в пульсирующий постоянный. Пульсации сглаживаются емкостно-индуктивным фильтром.
    Читайте также:  Блок питания принтера 24В 24В 12В WS500 3BAC Infiniti

    Далее постоянное напряжение, присутствующее все время, пока блок питания ATX подключен к розетке, поступает на схемы управлением ШИМ-контроллера и источник дежурного питания.

    схема БП

    Источник дежурного питания – это маломощный самостоятельный импульсный преобразователь на основе транзистора T11, который генерирует импульсы, через разделительный трансформатор и однополупериодный выпрямитель на диоде D24 запитывающие маломощный интегральный стабилизатор напряжения на микросхеме 7805. Эта схема хотя и является, что называется, проверенной временем, но ее существенным недостатком является высокое падение напряжения на стабилизаторе 7805, при большой нагрузке приводящее к ее перегреву. По этой причине повреждение в цепях, запитанных от дежурного источника, способно привести к выходу его из строя и последующей невозможности включения компьютера.

    Основой импульсного преобразователя является ШИМ-контроллер. Эта аббревиатура уже несколько раз упоминалась, но не расшифровывалась. ШИМ – это широтно-импульсная модуляция, то есть изменение длительности импульсов напряжения при их постоянной амплитуде и частоте. Задача блока ШИМ, основанного на специализированной микросхеме TL494 или ее функциональных аналогах – преобразование постоянного напряжения в импульсы соответствующей частоты, которые после разделительного трансформатора сглаживаются выходными фильтрами. Стабилизация напряжений на выходе импульсного преобразователя осуществляется подстройкой длительности импульсов, генерируемых ШИМ-контроллером.

    Важным достоинством такой схемы преобразования напряжения также является возможность работы с частотами, значительно большими, чем 50 Гц электросети. Чем выше частота тока, тем меньшие габариты сердечника трансформатора и число витков обмоток требуются. Именно поэтому импульсные блоки питания значительно компактнее и легче классических схем с входным понижающим трансформатором.

    ремонт БП

    За включение блока питания ATX отвечает цепь на основе транзистора T9 и следующих за ним каскадов. В момент включения блока питания в сеть на базу транзистора через токоограничительный резистор R58 подается напряжение 5В с выхода источника дежурного питания, в момент замыкания провода PS-ON на массу схема запускает ШИМ-контроллер TL494. При этом отказ источника дежурного питания приведет к неопределенности работы схемы запуска БП и вероятному отказу включения, о чем уже упоминалось.

    схема ремонта БП

    Основную нагрузку несут на себе выходные каскады преобразователя. В первую очередь это касается коммутирующих транзисторов T2 и T4, которые устанавливаются на алюминиевых радиаторах. Но при высокой нагрузке их нагрев даже с пассивным охлаждением может оказаться критическим, поэтому блоки питания дополнительно оснащаются вытяжным вентилятором. При его отказе или сильной запыленности вероятность перегрева выходного каскада значительно возрастает.

    Современные блоки питания все чаще используют вместо биполярных транзисторов мощные MOSFET-ключи, за счет значительно меньшего сопротивления в открытом состоянии обеспечивающие больший КПД преобразователя и поэтому менее требовательные к охлаждению.

    Видео про устройство БП компьютера, его диагностику и ремонт

    Распиновка основного коннектора БП

    Изначально компьютерные блоки питания стандарта ATX использовали для соединения с материнской платой 20-контактный разъем (ATX 20-pin). Сейчас его можно встретить только на устаревшей технике. В дальнейшем рост мощностей персональных компьютеров, а следовательно – и их энергопотребления, привел к использованию дополнительных 4-контактных разъемов (4-pin). Впоследствии разъемы 20-pin и 4-pin были конструктивно объединены в один 24-контактный разъем, причем у многих блоков питания часть коннектора с дополнительными контактами могла отделяться для совместимости со старыми материнскими платами.

    распиновка бп

    Назначение контактов разъемов стандартизировано в форм-факторе ATX следующим образом согласно рисунку (термином «управляемое» отмечены те выводы, на которых напряжение появляется только при включении ПК и стабилизируется ШИМ-контроллером):

    Наименование контакта Назначение
    +3.3V Положительное напряжение 3,3 В, управляемое. Питание материнской платы и процессора.
    +5V Положительное управляемое напряжение 5В. Питание части узлов материнской платы, жестких дисков, внешних устройств USB.
    +12V Управляемое напряжение 12В для жестких дисков, вентиляторов систем охлаждения.
    -5V Управляемое напряжение -5В. Стандартом ATX, начиная с версии 1.3, более не используется.
    -12V Управляемое напряжение -12В. Практически не используется.
    Ground Масса.
    PG Имеет высокий уровень при условии превышения напряжениями 5В и 3,3В нижнего порога (сигнализирует о выходе БП в рабочий режим).
    +5VSB Постоянное напряжение 5В (дежурный источник).
    PS-ON Включение блока питания при замыкании вывода на массу.

    Распределение нагрузки на блок питания

    Поэтому для каждого блока, кроме суммарной максимальной мощности, указывается и максимальное потребление тока для каждого выходного напряжения.

    БП

    Используя в качестве примера приведенную выше фотографию, продемонстрируем принцип расчета применимости БП:

    • Цепь 3,3В имеет максимально допустимый ток нагрузки 27А (89 Вт);
    • Цепь 5В может отдавать ток до 26А (130 Вт);
    • Цепь 12В рассчитана на ток до 18А (216 Вт).

    Но, так как все эти цепи запитаны от обмоток общего трансформатора, их суммарное потребление ограничивается: если в теории максимальная нагрузка по напряжениям 3,3В и 5В может доходить до 219 Вт, она ограничена значением в 195 Вт. При максимальной теоретической токоотдаче всех трех цепей в 411 Вт реальная нагрузка ограничена цифрой в 280 Вт.

    Таким образом, при добавлении нового «железа» в свой ПК нужно учитывать не только общее энергопотребление, но и баланс электрических цепей. Особенно часто замена блоков питания на более мощные требуется при установке высокопроизводительных видеокарт, значительно нагружающих цепь 12В, в то время как большую часть мощности ПК отбирают по низковольтным цепям – запас по высокому напряжению остается недостаточным.

    Возможные неисправности БП

    Поэтому большинство неисправностей БП персональных компьютеров связаны либо со старением его компонентов, либо со значительными отклонениями питания или нагрузки от номинальных параметров. Отдельно стоит упомянуть перегрев выходных каскадов из-за накопления пыли внутри БП при недостаточной частоте обслуживания компьютера.

    Сильнее всего старение сказывается на состоянии электролитических конденсаторов выпрямителя и выходных каскадов. Со временем они деградируют, теряя емкость, что приводит к заметному росту пульсаций напряжения на выходе блока, что может приводить к сбоям в работе ПК. Также, особенно в дешевых блоках, старение электролитических конденсаторов сопровождается их заметным вздутием, иногда приводящему к их разрушению с характерным хлопком.

    Читайте также:  Блок питания SunPower SF 100A импульсный

    Значительный рост напряжения питания или избыточная нагрузка способны привести к перегреву и короткому замыканию внутри диодного моста входного выпрямителя. В этом случае переменный ток из сети поступает в цепи, не рассчитанные на работу с ним: разрушаются электролитические конденсаторы, рассчитанные на однополярное питание, повреждаются ШИМ-контроллер и его транзисторная обвязка. Зачастую повреждение БП при этом делает его ремонт менее рентабельным по сравнению с полной заменой.

    Отказ выходных транзисторов импульсного преобразователя чаще всего является следствием их длительного перегрева, вызванного перегрузкой или недостаточным охлаждением.

    Проверка блока питания

    Хотя импульсный БП и не относится к числу радиоэлектронных схем начального уровня, его диагностика и ремонт своими руками доступны многим людям, имеющим базовые знания и навыки в области радиоэлектроники. Рассмотрим типовую процедуру проверки снятого с компьютера БП:

    1. Подключите к выводам +3,3В, +5В и +12В мощные нагрузочные резисторы, рассчитанные на ток около 1А и соответствующую мощность. Это нужно для избежания неправильной работы некоторых блоков без нагрузки.
    2. Подайте на блок сетевое питание.
    3. Проверьте наличие напряжения на линии +5VSB. Оно должно возникать непосредственно после включения блока в сеть.
    4. Замкните вывод PS-ON на корпус БП. При этом на силовых выходах БП и выводе PG должны установиться соответствующие напряжения.

    Возможные варианты неисправностей:

    ШИМ

    • При включении питания отсутствует дежурное напряжение. Если при этом БП запускается и генерирует управляемые напряжения, проверьте работоспособность импульсного преобразователя дежурного напряжения (наличие импульсов на первичной обмотке его трансформатора), исправность выпрямителя (наличие постоянного напряжения не менее 9В на входе микросхемы 7805) и работоспособность стабилизатора (на выходе микросхемы 7805 должно быть +5В).
    • Если присутствует дежурное напряжение, но БП не запускается, попробуйте принудительно запустить ШИМ-контроллер следующим образом:
    • При отсутствии генерации импульсов на обозначенных ножках микросхемы потребуется ее замена. В противном случае следует обратить внимание на выходной каскад преобразователя, особенно – коммутирующие транзисторы.
    • Если нет дежурного напряжения и БП не запускается, последовательно проверьте входной выпрямитель: целостность предохранителя и терморезистора, отсутствие обрывов в обмотках дросселей. Однако наиболее часто встречающаяся неисправность – это выгорание диодного моста в результате короткого замыкания в конденсаторе фильтра. Это будет сразу заметно и по характерному запаху, и по сгоревшим диодам.
    • Если же отсутствует напряжение только на одном из управляемых силовых выходов, стоит в первую очередь обратить внимание на выпрямительный диод и фильтрующий конденсатор этой цепи.

    Ремонт блока питания

    Так как вопрос «как отремонтировать компьютерный БП» вряд ли возникнет у профессионально владеющего соответствующим инструментом (паяльной станцией, оловоотсосом и т.д.) человека, в дальнейшем мы будем исходить из минимального набора самых распространенных приспособлений. Следовательно, нам понадобится паяльник мощностью в пределах 65 Вт с плоской заточкой жала, припой, бескислотный флюс (канифоль), пинцет и плоская отвертка. Удалить лишний припой можно с помощью зачищенного многожильного медного провода, внесенного под флюсом в каплю расплавленного олова.

    При замене крупногабаритных элементов наподобие конденсаторов нужно последовательно разогреть точки пайки их ножек, по возможности убрать лишний припой и далее, либо поочередно прогревая ножки и наклоняя корпус конденсатора из стороны в сторону извлечь его, либо, если размеры жала паяльника это позволяют, одновременно нагреть обе точки пайки и быстро выдернуть конденсатор из отверстий в плате. При этом, как и при работе с другими элементами, важно минимизировать время воздействия паяльника на плату и деталь.

    Транзисторы и мощные диоды при их замене устанавливаются в отверстия на плате таким образом, чтобы из крепежное отверстие совпало с резьбой в теле радиатора. Перед прикреплением к радиатору поверхность детали смазывается термопроводной пастой (КПТ -8 или ее аналоги).

    Заменяя электролитический конденсатор или диод, необходимо помнить, что это элемены полярные, и их установка должна строго соответствовать рисунку на плате (у конденсаторов, кроме танталовых, полоска обозначает отрицательный полюс).

    Еще один материал про ремонт БП компьютера

    После ремонта блока питания не стоит спешить устанавливать его в компьютер – лучше всего повторить проверку, описанную ранее.

    Заключение

    Хотя современные блоки питания ATX и очень надежны, знание общего принципа их работы и проверки может зачастую пригодиться не только для правильного выбора БП к своему компьютеру, но и для экономии денег при его отказе – ремонт своими руками обычно значительно дешевле покупки нового блока.

    Источник

    Разбор блоков питания atx

    Здравствуй, уважаемый читатель! Уверен, если ты открыл эту статью, — ты знаешь, что из себя представляет блок питания (БП). В анатомии каждого настольного ПК, игровой консоли и ноутбука присутствует БП.

    Нет, он не увеличивает FPS, не способствует производству криптовалюты, не состоит из миллиона позолоченных транзисторов и его не создают посредством новейшего технологического оборудования.

    Конечно, заголовки включающие в себя словосочетание «Блок питания» не бьют рекорды и не набирают миллионы просмотров, как это делают новейшие чипы, но все-таки хочется надеть перчатки и «приоткрыть» завесу тайны, — раскурочить БП и посмотреть, что же представляет из себя каждый отдельный блок и с чем ему приходится сталкиваться в момент работы.

    Некоторые компьютерные комплектующие требуют технических знаний в одноименной области, чтобы разобраться, что делает каждая из них (например, как работает ОЗУ). С блоком питания же все очевидно без слов — это, по сути, преобразователь переменного тока в постоянный, обеспечивающий бесперебойную работу всех компонентов ПК.

    Моим «донором» стал знаменитый китайский Cooler Master G650M — блок питания на 650 Вт из средней ценовой категории, обладающий стандартным дизайном и общей спецификацией, встречающейся в большинстве других.

    Но есть в нём и одна особенность, о которой умалчивают на многих форумах — этот БП соответствует форм-фактору ATX 12V v2.31, — а это означает, что его габариты позволяют быть установленным практически в любой системный блок.

    Источник