Меню

Портативная зарядка всегда в сети

Портативная зарядка: всегда в сети

В настоящее время термин “портативная зарядка’ используется в обиходе, означая какое-либо устройство, используемое для возобновления запаса аккумулятора электронной техники.

Многообразие мира портативных зарядных устройств

Современное производство диктует высокие стандарты для гаджетов, что делает их хранителями сравнительно большого количества энергии (например, в некоторых устройствах можно запасти количество энергии, позволяющее обеспечить работу смартфона в течение 30 дней).

В чем плюсы портативного зарядного устройства? Не только в том, что ими можно воспользоваться в любых условиях, но и в их универсальности. В отличие от большинства зарядных устройств, портативные приборы имеют целый комплект портов USB, при помощи которых Вы сможете зарядить любой гаджет, будь то iPhone, Asus или обыкновенный бюджетный телефон.

Несмотря на то, что емкость батареи телефона составляет около 530 мАч, а емкости планшетов больше в десятки раз, их можно заряжать при помощи одного устройства. Обыкновенный powerbank, купленный в китайском интернет-магазине сможет накопить более 9.000 мАч.

Но как же разобраться в огромном количестве моделей зарядных устройств? Как выбрать лучшее из них?

  1. Старайтесь выбирать устройство с несколькими портами USB. В этом случае Вы можете быть уверены, что сможете подобрать оптимальное количество потребляемого тока для каждого устройства, а также зарядить несколько гаджетов одновременно при помощи всего лишь одной зарядки;
  2. Вход и выходы должны иметь соответствующие подписи (в идеале также должно быть подписано количество отдаваемого тока). Обычно фирмы-производители используют несколько стандартных номиналов, при помощи которых Вы сможете зарядить как телефон, так и планшет;
  3. Уменьшить риск возникновения экстренных ситуаций поможет кнопка включения (также с ее помощью будет осуществляться блокировка закорачивания выходов). Кроме того, Вы никогда не потеряете такую зарядку в темное время суток, поскольку светодиод уровня заряда всегда поможет обнаружить гаджет (а обычно портативные источники используются в темное время суток: ночные переезды, походы, чрезвычайные ситуации);
  4. Удобна, но не обязательна система индикации уровня энергии. В стандартном виде она представлена рядом стрелок (чем выше уровень заряда, тем больше стрелок светятся). Когда устройство полностью заряжено, стрелки либо гаснут, либо загораются все. Благодаря этой иллюминации Вы всегда сможете отследить текущий уровень энергии в гаджете.

Далее следует разобраться, для чего именно Вы будете использовать портативное зарядное устройство в большинстве случаев. Современные аккумуляторы имеют среднюю характеристику 550 мАч.

  • Возьмем обыкновенный смартфон. Стандартный уровень напряжения – около 5В. Соответственно, если Ваш смартфон работает 48 часов, то он потратил около 11,5 мА в течение каждого часа. Сравним эту цифру с указанной выше. Естественно, что смартфон можно подключить к любому гнезду.
  • А теперь возьмем ноутбук средней мощности. Он имеет характеристику в районе 5300 мАч. Работать в таких условиях ноутбук сможет в районе 3-4 часов. Соответственно, потребление энергии составит около 1,514А. Также необходимо учитывать возможность пиковой производительности видеокарты. Если скорости тока не хватит, то нарушится изображение.

Следовательно, при работе исключительно с ноутбуками, необходимо усовершенствовать свою портативную зарядку. Для этого необходимо знать ее стандартное устройство.

Источник



Беспроводная зарядка для телефона — история создания и принцип действия

Чаще всего терминология «беспроводная зарядка» или «бесконтактная зарядка» ассоциируется с индуктивной зарядкой. В основе технологии лежит переменное магнитное поле, которое создается при помощи специальной зарядной станции. Стационарное оборудование продуцирует энергию, которая может быть получена устройствами в конструкции, которых предусмотрена индукционная катушка. Это способ бесконтактной подачи энергии на большие дистанции.

Данный принцип в свое время использовал ученый Никола Тесла. Беспроводной способ зарядки использовали разработчики беспроводных зубных щеток, эпиляторов, бритв и других устройств. Но этот метод дает небольшую мощность, он не способен обеспечить быструю передачу энергопотока. Он оправдал свою эффективность в отношении небольших приборов, которые используются лишь по нескольку минут в день. Индуктивный способ зарядки доказал свою эффективность и безопасность. Специальные аппаратные приспособления, которые встраивают в телефон, обеспечивает подзарядку устройства энергией.

История разработки

Беспроводной способ передачи электричества предполагает подачу энергии по электрической цепи без участия токопроводящего элемента. До 2011 года были закреплены первые успешные результаты, при использовании которых был создана первая беспроводная зарядка. В ходе эксперимента ученым удалось осуществить передачу десятков киловатт энергии на микроволновом уровне на дистанцию до одного километра. Показатель КПД составил 40%.

Опыт был проведен в 1975 году в штате Калифорния (Goldstone), второй эксперимент проводился через 22 года на острове Ренюньон (Grand Bassin). Эксперимент был проведен в рамках программы обеспечение населенного пункта без прокладки проводной электросети.

Способы беспроводной подачи электроэнергии индукционный, предполагающий использование малых мощностей на небольших дистанциях; резонансный, он нашел свое применение в чипах RFID, задействуют его и в процессе создания смарт-карт; направленный электромагнитный, обеспечивает передачу тока на большие дистанции и предусмотрен для больших мощностей. Его рабочий диапазон — ультрафиолет — СВЧ.

Беспроводная зарядка для телефона и других аналогичных устройств, стала разрабатываться уже после появления и тестирования технологии Qi. Бесконтактное приспособление для зарядки работает в автоматическом режиме. Процесс пополнения энергии начинается сразу поле того, как телефон или планшет попадает на специальную площадку, в диапазоне которой и проходит подача энергии.

Принцип работы

Работают беспроводные зарядки при помощи специальных приспособлений, которые работают от сети. Предусмотрен и другой вариант, когда в конструкции мобильного телефона или другого гаджета, предусмотрен встроенный аккумулятор. Благодаря такой комплектации устройство можно использовать в качестве внешней дополнительной батареи Power bank.

Наиболее востребованное сегодня беспроводное зарядное устройство — беспроводная подставка с функцией пополнения запасов энергии. Это приспособление разработано специально для iPhone. Современные гаджеты поддерживают стандарт Qi. Поставляются на современный рынок также беспроводные зарядные устройства для Samsung, Sony и для других смартфонов, которые совместимы с Qi.

Беспроводное зарядное устройство видео-обзор которого представлен на специализированных ресурсах, адаптировано для смартфонов Nokia и других гаджетов, которые не поддерживают Qi. Оно представляет собой чехол-ресивер с функцией зарядки. Встроенное беспроводное зарядное устройство для телефона в смартфоне Nokia Lumia 920 вывело данный бренд на новый уровень. Производитель Nokia надеется, что инновация позволит привлечь больше клиентов. Менеджеры компании полагают, что часть тех пользователей, что предпочитают сегодня продукцию Apple, перейдут в ряды покупателей Nokia Lumia. Компания Nokia признает фирменный стандарт QI от Консорциума беспроводного питания.

Еще раньше технология была признана такими мировыми производителями, как Samsung, Sony, HTC. В переводе с китайского «QI» ( ци) значит «поток энергии». Стандарт предусматривает снабжение устройств потоком энергии посредством применения магнитной индукции.

Безопасность данного метода заключается в том, что тут исключен риск замыкания провода при случайном попадании воды.

Что собой представляет беспроводное зарядное устройство для телефона?

По представлению многих пользователей беспроводные зарядные устройства для телефонов это аппараты, что работают по аналогии Wi-Fi. На самом деле беспроводное мобильное зарядное устройство работает по магнитно-индукционному принципу. В конструкции зарядных аппаратов предусмотрена электромагнитная катушка, генерирующая поле. Кода телефон ставится на поверхность этого приспособления, процесс подачи энергии активизируется. Не стоит путать беспроводные зарядные устройства для телефонов с зарядным кабелем для Mac-устройств. В проводах для подзарядки Mac также используют магниты, но передача тока производится по принципу проводимости, а не с помощью силы магнитной индукции.

Скорость заряжания телефонов

Объем заряда батареи смартфона исчисляют в миллиампер-часах. Используя среднюю по мощности зарядку можно определить численность единиц напряжения, силу ампеража, которые поступают с постоянным током. В среднем 1 А номинального тока с напряжением в 5 В напряжения получает батарея от стандартного проволочного устройства. Такого заряда хватает где-то на 3, 5 часа. Беспроводное зарядное устройство для мобильных телефонов поддерживает те же показатели напряжения, но снижает ампераж до 0, 65 А. Из-за этого аккумулятор заряжается дольше, в среднем на 30-40 минут.

Недостатки технологии

Какие недостатки беспроводной зарядки Короткий радиус. Качество зарядки зависит от мощности магнитного поля. Чем сильнее поле, тем мощнее поток энергии. Но для передачи заряда предусмотрен короткий радиус действия.

Скорость и эффективность подачи заряда

Бесконтактный способ не дает той скорости и результативности, что способен обеспечить контактный физический способ подключения. Габариты. Любой зарядный аппарат, пусть и самый маленький, значительно увеличивает объем и вес устройства. Когда размер катушки для планшета или смартфона удастся уменьшить в десятки раз, то проблема исчезнет. Беспроводные зарядные устройства в будущем

Когда разработчикам удастся сократить размер катушки, также повысить эффективность беспроводной зарядки, то это буде значительным прорывом. Первым, претендентом, который способен улучшить эти показатели является Apple. Компания уже запатентовала аппарат, который способен передавать поток энергии на метровую дистанцию. Сотрудники беспроводного Консорциума питания также постоянно совершенствуют свои результаты, стремлясь к лидерству на рынке.

Третий претендент — разработчик Intel, который развивает интегрированную технологию магнитных устройств. Зарядный аппарат планируют встроить в ноутбук, оно будет раздавать потоки энергии всем приближенным периферийным устройствам.

Беспроводная зарядка — перспективное аппаратное приспособление, у которого есть потенциал и будущее. Понимая преимущества данного способа передачи энергии, все больше разработчиков стремится создать инновационное зарядное устройство для смартфонов, которое сделает жизнь человека проще и приятней.

Источник

Развитие беспроводных зарядных устройств

По мнению многих аналитиков и экспертов, в наступившем году системы беспроводной подзарядки наконец-то перестанут быть экзотикой и начнут победное шествие на рынке мобильных устройств.

Последний кабель

Характеризуя то или иное электронное устройство, мы всё чаще пользуемся набором прилагательных «мобильное» и «беспроводное». Действительно, современные мобильные устройства, за редким исключением, уже невозможно представить без набора беспроводных интерфейсов. Именно с их помощью осуществляется подсоединение к каналам широкополосной связи (сотовым сетям, зонам беспроводного доступа, локальным сетям дома и в офисе и т.д.), периферийным устройствам (гарнитурам, наушникам, акустическим системам, накопителям), другим мобильным гаджетам и компьютерам.

Однако есть одно обстоятельство, которое пока не позволяет называть мобильные устройства в полной мере беспроводными. Ведь даже владельцам безумно дорогих ультрасовременных смартфонов и планшетов по-прежнему приходится мириться с необходимостью регулярно подключать кабель к внешнему источнику питания для подзарядки аккумуляторной батареи, обеспечивающей работу мобильного устройства в автономном режиме. А учитывая отменный аппетит современных гаджетов, оснащенных большими дисплеями высокого разрешения, многоядерными процессорами и набором беспроводных интерфейсов, делать это приходится практически ежедневно.

Читайте также:  База предложений о продаже автомобилей

Можно ли считать мобильное устройство в полной мере беспроводным,
если для его подзарядки необходимо подключать кабель?

Нельзя сказать, что производители не предпринимают усилий для решения этой проблемы. Одним из важных шагов, позволивших значительно облегчить жизнь конечных пользователей, стала стандартизация электрических характеристик и разъемов для подключения внешних источников питания. Значительную часть ныне выпускаемых мобильных устройств можно подзаряжать от порта USB, используя для подключения стандартный интерфейсный кабель. С одной стороны, прогресс очевиден: вместо полудюжины разнокалиберных адаптеров, каждый из которых был оснащен кабелем с уникальным разъемом, теперь вполне можно обойтись одним универсальным источником питания с розеткой USB. С другой стороны, окончательно избавиться от извивающихся по столу проводов всё же пока не удалось. И если в домашней обстановке проводное подключение внешнего источника питания еще можно считать приемлемым вариантом, то в мобильных условиях необходимость подсоединения даже одного кабеля создает множество неудобств.

Декоративные светильники Philips Imageo комплектуются
беспроводным бесконтактным зарядным устройством

Одним из способов окончательного решения данной проблемы является внедрение технологий, позволяющих передавать электрическую энергию на небольшие расстояния без использования кабелей. Принцип работы подобных систем известен уже более века, да и примеров их успешного применения в различных устройствах можно найти немало. Так, в графических планшетах компании Wacom уже более десятка лет применяются беспроводные безбатареечные перья, получающие питание от планшета. В продаже представлены электрические зубные щетки, электробритвы и декоративные светильники, встроенные аккумуляторы которых подзаряжаются бесконтактным способом. Еще один пример — смарт­карты, используемые в качестве электронных пропусков, проездных билетов и т.д. В такой карте есть миниатюрный чип, но нет встроенного источника питания. Необходимый для работы ток чип получает от считывающего терминала (валидатора) при помощи встроенной в карту антенны.

Стандартизация — залог успеха

В современных условиях одним из важных слагаемых успеха любой технологии, разработанной для внедрения в массовых устройствах, является стандартизация. Даже самые передовые решения будут малопривлекательными для конечных пользователей до тех пор, пока сфера их применения ограничена продукцией одного (пусть даже крупного и хорошо известного) производителя. За примерами далеко ходить не надо: вспомните хотя бы носители MiniDisc и флэш­карты формата Memory Stick компании Sony.

Неудивительно, что производители оборудования, заинтересованные во внедрении технологий бесконтактной беспроводной подзарядки, начали решение этого вопроса с создания единого индустриального стандарта. С этой целью 17 декабря 2008 года была основана организация Wireless Power Consortium (WPC). Изначально в ее состав вошли представители компаний ConvenientPower, Fulton Innovation, Logitech, National Semiconductor, Royal Philips Electronics, Sanyo Electric, Shenzhen Sang Fei Consumer Communications и Texas Instruments. Впоследствии список членов WPC постоянно расширялся (в него, в частности, вошли такие известные производители, как Olympus, Nokia и Energizer) и к настоящему моменту включает более ста компаний.

Логотип стандарта Qi

Весной 2010 года члены Wireless Power Consortium завершили работу над текстом спецификации первой части стандарта беспроводных зарядных устройств малой мощности (до 5 Вт), получившего название Qi (читается «ки»). В этом документе описываются требования к беспроводным зарядным станциям и ресиверам, встраиваемым в мобильные устройства. Также были утверждены процедуры тестирования и сертификации устройств на соответствие требованиям стандарта Qi и совместимость с соответствующим оборудованием других производителей.

К сожалению, избежать «войны стандартов» в сфере беспроводных зарядных устройств вряд ли удастся. В начале мая минувшего года компании Samsung Electronics и Qualcomm основали альянс Alliance for Wireless Power (A4WP) — независимую организацию для продвижения и стандартизации решений в области беспроводных зарядных устройств, а также тестирования и сертификации соответствующего оборудования. Нетрудно заметить, что A4WP является прямым конкурентом WPC.

В конце октября прошел симпозиум A4WP, на котором участники альянса обсуждали основные положения спецификации. В качестве базовой была выбрана технология магнитного резонанса в ближнем поле. Основные положения спецификации A4WP предусматривают возможность одновременной подзарядки нескольких устройств различной мощности и создания зарядных поверхностей, встраиваемых в автомобили, мебель и т.д.

Есть информация о том, что компания Apple также ведет работы по созданию систем беспроводной зарядки для своих устройств. Впрочем, это вряд ли волнует кого-нибудь, кроме обладателей гаджетов «яблочной» компании.

Преимущества и ограничения

Главные преимущества беспроводной подзарядки — отсутствие кабелей и максимальная простота использования. Чтобы зарядить мобильное устройство, достаточно положить его на поверхность специального планшета, после чего будет автоматически установлено соединение и начнется процесс подзарядки.

Конструкция и принцип работы зарядных планшетов обеспечивают высокую безопасность и надежную защиту от неблагоприятных воздействий. Эффективный радиус действия ныне выпускаемых систем не превышает нескольких миллиметров, а мощность электромагнитного излучения быстро ослабевает по мере удаления от его источника. Так что в этом смысле беспроводные зарядные устройства гораздо безопаснее таких столь привычных нам приборов, как микроволновые печи и мобильные телефоны.

Беспроводной зарядный планшет Energizer, рассчитанный
на два устройства

Беспроводной зарядный планшет можно сделать полностью герметичным — в таком случае пролитая на его поверхность жидкость не приведет к возникновению неисправностей и поломок. Это позволяет создавать зарядные поверхности, встраиваемые в кухонную мебель или в столики кафе. А благодаря механизму автоматического обнаружения приемных устройств, планшету не нанесут вреда даже металлические предметы (ключи, монеты и т.п.), случайно оказавшиеся на его поверхности.

Еще одно преимущество, о котором хотелось бы упомянуть, — отсутствие электрического контакта между зарядным устройством и заряжаемым аппаратом. Это значительно снижает риск повреждения последнего при резких колебаниях и бросках в электросети, а также при выходе из строя зарядного устройства.

Демонстрация работы прототипа
«многоместного» зарядного планшета

По большому счету, развитие систем беспроводной подзарядки только начинается, поэтому приходится считаться с определенными ограничениями. Как уже было упомянуто, действующая спецификация стандарта Qi позволяет подключать устройства, потребляющие не более 5 Вт. Этого вполне достаточно для питания беспроводной гарнитуры, смартфона или портативной игровой приставки. Однако для подзарядки аккумулятора цифрового фотоаппарата, а тем более ноутбука требуется значительно более высокая мощность. Таким образом, сфера применения беспроводных зарядных устройств пока ограничена лишь относительно маломощными гаджетами.

Для достижения приемлемой эффективности передачи электроэнергии необходимо точно совмещать катушки приемника и зарядной поверхности. По этой же причине существует жесткое ограничение по максимальному расстоянию между катушками приемного и передающего модулей: в ныне выпускаемых устройствах оно не может превышать нескольких миллиметров.

Внутренняя компоновка беспроводного
зарядного устройства с массивом катушек

Способы обеспечения точного совмещения катушек приемного и передающего модулей описаны в действующей спецификации стандарта Qi. В частности, предусматривается возможность создания зарядных устройств с подвижной катушкой либо с массивом катушек. Реализация этих решений позволяет конечным пользователям не заботиться о точном совмещении приемного модуля заряжаемого аппарата с определенным участком зарядной поверхности.

Устройства и инфраструктура

Первые серийные устройства, оснащенные встроенными модулями для подключения к беспроводным зарядным планшетам стандарта Qi, были выпущены в конце 2010 года. Далее процесс пошел по нарастающей: в 2011-м в линейках компании HTC, LG, Motorola, Samsung, Fujitsu, NEC и Sharp появились мобильные телефоны и смартфоны, оснащенные встроенными модулями для беспроводного подключения к зарядным устройствам стандарта Qi. К концу минувшего года таких моделей насчитывалось уже более трех десятков. Из наиболее свежих новинок можно упомянуть аппараты Google Nexus 4, Nokia Lumia 920 и HTC Windows Phone 8X.

Смартфон Nokia Lumia 920 с фирменным
беспроводным зарядным устройством

Растущий интерес к беспроводным зарядным устройствам был отражен в экспозиции крупнейших выставок минувшего года. Например, на стендах январской CES 2012 было представлено в общей сложности более 70 серийных продуктов и прототипов с поддержкой технологии беспроводной зарядки Qi.

Чтобы ускорить процесс внедрения новой технологии, производители аксессуаров начали выпуск адаптеров, позволяющих реализовать функцию беспроводной зарядки в уже эксплуатируемых устройствах. Наиболее простым и удобным вариантом модернизации является замена штатной крышки батарейного отсека на аналог, оснащенный встроенным модулем для подключения к беспроводному зарядному устройству. Другой вариант — защитные чехлы и съемные накладки на корпус со встроенным модулем беспроводной зарядки. Решение менее изящное, поскольку в этом случае необходимо подсоединять провод от беспроводного зарядного модуля к USB-порту или док­разъему мобильного устройства.

Сменная задняя панель смартфона, оборудованная
встроенным модулем беспроводной подзарядки

Очевидно, что продвижение устройств с функцией беспроводной подзарядки невозможно без создания разветвленной инфраструктуры, позволяющей пополнять запас электроэнергии не только дома и в офисе, но также в общественных местах и в пути.

Для эксплуатации в стационарных условиях производители предлагают две разновидности беспроводных зарядных устройств. В одну из них входят зарядные коврики, планшеты и т.п. Другая разновидность — беспроводные зарядные модули, встраиваемые в бытовые электронные устройства и мебель. В качестве примеров можно привести будильники и музыкальные центры со встроенной зарядной поверхностью. Удобным вариантом для дома и офиса являются беспроводные зарядные планшеты, встроенные в мебель, например в столешницу или полку. В этом случае достаточно положить смартфон или другое мобильное устройство на определенную область стола — и оно автоматически начнет заряжаться.

Задник для портативной игровой консоли Nintendo 3DS,
обеспечивающий возможность беспроводной подзарядки

Перспективным направлением является установка зарядных поверхностей в автомобилях. Для разработки и внедрения таких решений в рамках консорциума WPC была создана специальная рабочая группа под названием Automotive Application Group (AAG).

В наступившем году беспроводные зарядные устройства, сертифицированные на совместимость со стандартом Qi, появятся в серийно выпускаемых дорожных автомобилях компаний Chrysler, General Motors и Toyota.

Владельцы автомобилей Dodge Dart с тюнинговым пакетом MOPAR получат в свое распоряжение беспроводное зарядное устройство, вмонтированное в центральную консоль. Функционирует зарядная поверхность размером 210×241 мм только при включенном зажигании. Начало продаж модели Dodge Dart намечено на II квартал текущего года.

Погодная станция Oregon Scientific QW201
со встроенной зарядной поверхностью

Автомобиль Toyota Avalon Limited 2013-го модельного года можно будет оснастить модулем беспроводной зарядки портативных электронных устройств — правда для этого потребуется установить пакет опций Technology Package. Поверхность для размещения заряжаемых устройств расположена внутри небольшой полочки, выдвигающейся из центральной консоли автомобиля.

Читайте также:  Аккумулятор Spard Li Po 7 4V 2800mAh 15C EC2 YT823496HHHH ID 265172

Верхняя панель портативной акустической системы JBL
представляет собой зарядную поверхность

Важным фактором, который будет способствовать популяризации новой технологии, является развитие инфраструктуры беспроводных зарядных устройств в общественных местах — кафе, гостиницах, аэропортах и т.д. Этот процесс уже набирает обороты в ряде азиатских стран — в частности в Японии и Южной Корее. Так, в Стране восходящего солнца к началу IV квартала минувшего года насчитывалось в общей сложности более 500 публичных мест, оборудованных беспроводными зарядными поверхностями. По словам вице-президента крупнейшего японского оператора связи NTT Docomo Хироюки Ёшида (Hiroyuki Yoshida), уже к концу марта планируется увеличить их количество до 10 тыс.

Выдвижная полочка с зарядной поверхностью
в интерьере автомобиля Toyota Avalon Limited

Высокие темпы развития инфраструктуры беспроводных зарядных устройств в Японии обусловлены большим количеством пользователей, имеющих в своем распоряжении мобильные устройства с соответствующей функцией. Например, NTT Docomo реализовал уже более 1,8 млн мобильных телефонов с поддержкой беспроводной зарядки стандарта Qi. В свою очередь, компания LG сообщила, что в Южной Корее продано более 500 тыс. смартфонов Optimus LTE2, оснащенных встроенным модулем беспроводной зарядки стандарта Qi.

Перспективы

Сейчас уже очевидно, что внедрение систем беспроводной зарядки позволит сделать использование мобильных устройств с высоким энергопотреблением и небольшим запасом автономной работы гораздо более удобным и комфортным. Как констатировал журналист одного из американских изданий, получивший возможность опробовать смартфон со встроенным модулем беспроводной подзарядки, «я не считаю эту функцию обязательной, однако, оценив ее преимущества на собственном опыте, уже не хочу отказываться от нее».

Весьма интересным представляется внедрение беспроводных зарядных устройств в беспроводной периферии. Например, достаточно оставить беспроводную мышь или игровой манипулятор на ночь на определенном участке стола, чтобы не гадать о том, хватит ли его заряда на следующий день.

Наиболее важные проблемы, над решением которых сейчас ломают голову разработчики беспроводных зарядных систем, — это способы увеличения радиуса действия и передаваемой мощности. Последний фактор является весьма критичным для дальнейшего расширения сферы применения систем беспроводной зарядки, в частности для проникновения их в весьма привлекательный сегмент портативных ПК.

Одним из возможных вариантов увеличения радиуса действия беспроводной зарядной поверхности без снижения ее эффективности является переход к использованию технологии магнитного резонанса. В апреле минувшего года на официальном веб­сайте WPC была опубликована информация о том, что внедрение такого решения позволит увеличить максимально допустимое расстояние между зарядной поверхностью и приемным модулем мобильного устройства до 40 мм.

На протяжении уже нескольких лет в компании Intel идут работы по созданию беспроводной системы передачи электроэнергии с увеличенным радиусом действия, которая порадовала бы питание портативным ПК. По предварительным данным, она позволит обеспечить питание нагрузки, потребляющей мощность в несколько десятков ватт, и устойчивую работу на расстоянии до трех футов (примерно 90 см). Работающий прототип такой системы был продемонстрирован на осеннем форуме IDF 2008, однако информации о возможных сроках появления серийных устройств до сих пор нет.

Грандиозные проекты имеются и у компании TI, которая в настоящее время уже выпускает готовые решения для интеграции в серийно выпускаемых устройствах. В среднесрочной перспективе (от 5 до 10 лет) планируется создать пригодные для коммерческого использования системы беспроводной передачи электроэнергии, позволяющие питать бытовые электронные устройства (телевизоры, акустические системы и т.д.) и даже осуществлять бесконтактную подзарядку электромобилей.

Источник

Портативная зарядка

Портативная зарядка – это обиходный термин, подразумевающий устройство, способное возобновить запасы аккумулятора мелких бытовых устройств: сотовых телефонов, iPad, ноутбуков. Ключевым параметром считается даже не ёмкость, а расходный ток. Если он укладывается в запросы потребителя, совместное функционирование в паре с портативной зарядкой возможно.

Разновидности портативных устройств для аккумуляции электрической энергии

Сегодня развитие технологии позволяет запасти значительный объем электрической энергии. Указанные устройства именуют портативными зарядками в противовес адаптерам, которые для преобразования энергии полагается подключить к промышленной сети 220 В, 50 Гц. Плюс переносных аккумуляторов в универсальности. Допустим, возьмём iPad и простой сотовый телефон. Брать дорогостоящий объёмный аккумулятор для приборов накладно.

Объем литий-ионной батарейки для сотового телефона составляет 520 мАч, ноутбука Acer – 5200. Вроде цифры отличаются на порядок, но портативная зарядка за 10 долларов способна накопить 8800 и более. Это значит, что прибор годится. Причём обыкновенный сотовый телефон сможет работать от переносного источника питания… целый месяц. Это просто потрясающая возможность для туристов наравне с китайскими радиоприёмниками с встроенной динамо-машиной. Для удобства пользования портативная зарядка снабжается рядом опознавательных значков и кнопок управления:

Современная зарядка

  1. Порты USB используются в виде универсальных устройств раздачи питания. Любой адаптер мобильного гаджета несёт на корпусе стандартный выход. Это позволяет менять мобильные телефоны, но не зарядное устройство: стоит лишь приобрести новый шнур (идёт в комплекте) и пользоваться аппаратурой, как прежде.
  2. Устройства часто отличаются потребляемым током, потому портативная зарядка снабжена рядом выходов. Каждый предназначен для конкретного гаджета, причём не исключается параллельное использование. Допустим, люди пользуются сотовым, в дорогу берут смартфон либо iPad для удобной работы с интернетом. Удобно купить единственную портативную зарядку на все случаи жизни.
  3. Кнопка включения позволяет блокировать случайное закорачивание выходов, уменьшает риск нештатных ситуаций. Портативная зарядка выдаёт напряжение исключительно при нажатии пользователя. Светодиод индикации помогает сориентироваться в темноте. Портативный источник питания часто требуется там, где нет иного освещения: ночью в палатке, на транспорте.
  4. Вход (in) и выходы (out) в обязательном порядке подписаны. Попутно указываются номиналы отдаваемых токов. Производители исходят из стандартов, предоставляя 1 и 2 А, по умолчанию. Первый годится для сотовых телефонов, второй для iPad.
  5. Система индикации заряда служит для наглядного отображения процесса заполнения аккумулятора энергий. Это ряд мигающих стрелок, чем дольше процесс, тем большее количество сегментов участвует в иллюминации. По окончании зарядки огоньки гаснут либо остаются зажжёнными.

Чтобы решить с определённой долей уверенности вопрос о пригодности источника питания, следует выяснить технические характеристики оборудования. Речь о максимальном потребляемом токе. Если значение не удовлетворено, последует отказ оборудования. Максимальный потребляемый ток далеко не всегда указан в паспорте изделия, допустимо посчитать средний. Приобретём аккумулятор на 520 мАч, а сотовый телефон работает от него 2 дня. Недостающий в паспорте параметр возможно вычислить.

Портативное зарядное устройство

Портативное зарядное устройство

Вышеозначенная цифра говорит, что аккумулятор отдаёт ток в 520 мА целый час. Напряжение по умолчанию лежит в районе 5 В, это стандарт для нового поколения мобильных устройств. Если сотовый телефон работал двое суток, значит, потребляет он в 48 раз (количество часов): 11,8(3) мА. Понятно, что устройство заработает от любого гнезда. А теперь посмотрим на ноутбук.

При объёме аккумулятора 5200 мАч устройство работает 3 – 3,5 часов. Этого мало – тем больше желания приобрести портативную зарядку. При сомнениях, на какой выход подключать, смотрите на больший — где 2 А. А теперь конкретные цифры. При работе 3,5 часа ноутбук в среднем демонстрирует потребление 5200/3,5 = 1,485 А. Одновременно учитывается, что пиковая производительность процессора или видеокарты способна характеризоваться и большими цифрами. Кстати, на коробке часто схематично показывают отношение объёма аккумулятора зарядки к аналогичному параметру сотовых телефонов. Чтобы владелец понял о продолжительности работы его устройства.

Если тока не хватит, ноутбук отключится, операционная система даст сбой, построение изображений нарушится. Ноутбук подключается на выход 2 А, учитывая технические возможности. Это значит, что любой гаджет заряжается от встроенного USB-порта, но аккумулятор ноутбука наполняется через встроенный блок питания. Следовательно, придётся конструкцию доработать.

Зарядка от портативки

Зарядка от портативки

Как устроена портативная зарядка

Сердцем источника питания служит аккумулятор литий-ионного, литий-полимерного или иного типа. Внутри находится лишь система индикации и датчик (к примеру, Холла) для управления процессом отображения уровня заряда. В зависимости от интеллектуальности алгоритма методики отличаются. Возможна выработка импульсов тока малой амплитуды, интеграция информации. Встроенный чип на плате способен контролировать:

  • Перегрузки по входу или выходу, включая по напряжению. В последнем случае процесс зарядки окажется немедленно прекращён. Чип в некоторых случаях контролирует и полярность, хотя мало вероятности, что USB-штекер вставится неправильной стороной.
  • Возникновение короткого замыкания в потребителе. В случае нештатной ситуации работа немедленно прекращается.
  • Контроль уровня заряда способен достигать потрясающих высот. Чип не позволяет оставить свободного места: аккумулятор заполняется доверху.
  • Предупреждение о перегреве элемента. В теме про Лампочки накала говорится, что выгоднее использовать высокое напряжение. Тем не менее, приходится применять указанные источники питания. Большинство наборов микросхем (чипсетов) работают именно с низкими напряжениями. К примеру, для КМПО это 5 В. Хотя ранние версии микросхем порой требовали иного. Любая электроника основывается на конкретном виде логики. Транзисторная с барьером Шоттки, эмиттерно-связанная и прочее.

Применение аккумулятора

Добавим, что тепловой эффект в проводниках зависит от тока, но не от напряжения.Поэтому современные процессоры сильно греются. При малом напряжении питания они потребляют потрясающий ток. Но перейти на повышенный порог не могут, реализуются схемотехнически на упомянутых выше типах логики. Этот момент нужно чётко понимать. Зато низкое напряжение безвредно для человека, эпиляторы, бритвы показывают класс электробезопасности III.

Приборы позволяют спокойно пользоваться ими под душем, в идеале применять портативную зарядку. В большинстве случаев бытовая техника использует 9 либо 12 В. Это чисто технический вопрос, который легко обойти.

История создания портативной зарядки

Историю следует начать с Алессандро Вольта, разделившего пластинки цинка и меди смоченным в рапе картоном (допустимо использовать ткань). Это оказался крутой раствор соли, а не кислота – как указывается в отдельных источниках. Как говорилось в теме про Постоянный ток – Гальвани открыл электричество химического происхождения, вскрывая лягушку. Крючки сделаны были из разных металлов, и мышцы мёртвого земноводного по неизвестной причине дёргались.

Гальвани объяснил это наличием «животного» электричества и остался далёк от истины. Вольта повторил опыты и обосновал суть явления наличием тока, замыкаемого между металлами через электролит. В качестве такого избрал одну из физиологических жидкостей – солёную воду. В дальнейшем уже электролитом стала кислота. Вольта 9 лет шёл к изобретению первого аккумулятора. И 20 марта 1800 выслал рукописи президенту Лондонского королевского общества.

Первыми аккумуляторами считают лейденские банки. Изобретённые в 1745 году, они стали объектом внимательного изучения учёных. После отмены преследования за колдовство люди стали интересоваться загадочными явлениями. Термин «батарея» введён Бенджамином Франклином, благодаря сходству ряда банок с позицией артиллерии.

Читайте также:  Внешний вид зарядных устройство

Цинк в вольтовом столбе сильно подвергался коррозии, что изобретатель счёл дефектом, устранимым со временем. Вольта придерживался устаревшей сегодня теории контакта, и не подозревал, что в основе лежат химические реакции. С течением времени установили, что коррозия усиливается при потреблении большего тока. Что уже прямо указывало на электрохимическое происхождение явления. Вольтов столб открыл зелёный свет дальнейшему исследованию электричества, обнаруживая ряд недостатков:

  • Первоначально пластины складывались стопкой, электролит стекал по бокам, вызывая короткие замыкания. Сложность быстро устранили, размещая элементы вертикально, в коробке.
  • Химическая реакция шла с образованием водорода, а цинк быстро покрывался слоем продуктов. Вильямом Стердженом (изобретатель электромагнита) в 1835 году предложено покрывать пластину тонким слоем амальгамы, что блокировало негативные эффекты. Трудности с водородом решил Джон Фредерик Дэниэл, внедрив два электролита, один из которых поглощал ионы. Растворы отделены друг от друга керамическим барьером.

До 70-х годов XIX века аккумуляторы применялись в составе промышленного оборудования, телеграфов. Потом возникли предпосылки ко внедрению их в повседневную жизнь в первоначальном виде – лишь для состоятельных людей. Иные сами выступали в роли изобретателей (в особенности, бытовой техники), что требовало наличие запасов энергии для экспериментов. Особенно в изобретении оказался заинтересован Эдисон, не умевший передать постоянный ток на большие расстояния. Генераторы переменного тока первоначально в тандеме с аккумуляторами не применялись.

В портативных зарядках применяется технология, зародившаяся на заре XX века и позволявшая внедрять электрохимическим путём атомы вещества в кристаллическую решётку другого. В литий-ионных аккумуляторах ион путешествует от положительного электрода к отрицательному при зарядке и обратно в процессе включения нагрузки. Первоначально подобные устройства появились по вине фирмы Sony в 90-е года XX века и назывались креслом-качалкой. Это явилось предпосылкой для создания мобильных устройств.

В полимерных аккумуляторах применяется специфический твёрдый (либо сгущенный) электролит, давший название прибору. Понятно, что при поломке такое техническое решение избавляет от ряда неприятностей. В литий-ионных аккумуляторах электролит жидкий.

Источник

Зарядное устройство история создания

Большинство современных мобильных устройств питаются от аккумуляторов, для зарядки которых используются сетевые зарядные устройства. И хотя к большинству гаджетов ЗУ идут в комплекте, необходимость в покупке еще одной зарядки возникает не так уж и редко: штатная зарядка может потеряться или сломаться, а некоторые гаджеты вообще не имеют ЗУ в комплекте. Однако по какой бы причине вам ни понадобилось новое сетевое зарядное устройство, следует иметь в виду, что «подходящего» к гаджету разъема ЗУ недостаточно. Следует убедиться, что остальные характеристики зарядки также соответствуют параметрам заряжаемого устройства.

Характеристики сетевых зарядных устройств

Разъем подключения — первое, что определяет совместимость зарядного устройства с заряжаемым. К счастью, времена, когда каждый производитель снабжал свои гаджеты уникальным разъемом, потихоньку уходят в прошлое, и большинство современных устройств используют разъем USB или его варианты — mini USB, micro USB, USB Type-C. ЗУ для таких гаджетов, как правило, имеют разъем USB и — по необходимости — съемный кабель в комплекте, являющийся переходником на другие разъемы того же стандарта. Хотя встречаются и зарядки с разъемом типа micro USB или USB Type-C на корпусе или на несъемном кабеле — но никакого преимущества это им не дает, наоборот, делает их менее универсальными.

Встречаются зарядные устройства с несколькими разъемами USB — от двух до восьми. Такими можно заряжать несколько устройств одновременно, но имейте в виду, что выходной ток на порт в этом случае может быть меньше суммарного максимального выходного тока. Если подключить к ЗУ с максимальным выходным током в 1000 мА два устройства, заряжающиеся таким током, оба они «получат» только по 500 мА (даже если для него заявлен выходной ток на порт в те же 1000 мА) и будут заряжаться вдвое дольше. Выходной ток на порт может быть равен максимальному, только когда к нему подключено лишь одно устройство, «забирающее» максимальный ток.

Из остальных распространенных разъемов можно отметить разве только 8-pin Lightning, использующийся на мобильных устройствах Apple с 2012 года.

При желании еще можно найти зарядные устройства для старых гаджетов — 20-pin разъемы для смартфонов Samsung, 30-pin разъемы для гаджетов Apple до 2012 года, 18-pin разъемы для смартфонов LG и так далее, но выбор их невелик, и в скором времени следует ожидать их полного исчезновения с полок магазинов.

Также встречаются ЗУ с цилиндрическими разъемами типа DJK или jack, такие разъемы питания используются во множестве различной электроаппаратуры. Особенность подбора такого зарядного устройства в том, что общепринятого стандарта у них нет, каждое устройство, использующее такой разъем, может иметь различные параметры зарядки, которые следует тщательно соблюсти. При покупке ЗУ с таким разъемом следует убедиться, что расположение полюсов, сила тока и напряжение на нем в точности соответствуют указанным в руководстве по эксплуатации заряжаемого устройства (или хотя бы на его корпусе). Несоблюдение этого требования может привести к выходу из строя как зарядки, так и заряжаемого гаджета.

Сила тока у зарядного устройства с разъемом lightning может быть любой — все устройства Apple снабжены контроллером заряда и просто не возьмут ток больший, чем необходимо. Другое дело, что ток меньший, чем может потреблять устройство, увеличит время зарядки. И к примеру, iPad mini 1-го поколения, заряжающийся током 0,15 А, можно заряжать и от ЗУ с выходным током 2,4 А — на процесс зарядки это не повлияет. Обычный iPad от «телефонной» зарядки с выходным током 1 А тоже будет заряжаться — но вдвое дольше обычного. Различные устройства Apple могут заряжаться токами от 0,15 до 2,4 А.

То же относится и к зарядным устройствам с разъемом USB — контроллер заряда смартфона защитит его при подключении к слишком мощному ЗУ. В обратном случае — при подключении к «слабой» зарядке устройства, способного заряжаться высоким током — время зарядки возрастет.

Грубо говоря, и с портом Lightning, и с портом USB зарядное устройство для смартфона лучше брать с током хотя бы от 2 А. Многие современные смартфоны могут заряжаться током в 3 А, а гаджеты покрупнее спокойно «берут» 4-5 А. Большинство прочих устройств, заряжаемых от USB, также имеют контроллер зарядки и «не боятся» высоких токов, однако для полной уверенности лучше все же свериться с руководством по эксплуатации и не заряжать током выше указанного в нём.

Напряжение на круглом разъеме типа DJK или jack может быть разным и должно соответствовать требованиям заряжаемого устройства.

А вот с разъемами Lightning и USB всё сложнее. Стандартное напряжение для этих разъемов — 5 В. Однако в интеллектуальных режимах быстрой зарядки напряжение может подниматься до 20 В. Происходит это автоматически, без участия пользователя: контроллер заряжаемого устройства, используя протокол быстрой зарядки, устанавливает на зарядном устройстве нужный режим. Это позволяет сократить время зарядки в несколько раз и производители утверждают, что такие режимы не приводят к сильному сокращению срока службы аккумуляторов.

Проблема в том, что некоторые кабели не являются просто «кусками меди» — в них встроены согласующие резисторы (кабели USB 2 — USB Type-C), а иногда и управляющие микросхемы (кабели Lightning, USB 3.1). Поэтому категорически рекомендуется для режимов быстрой зарядки использовать только «родные» кабели, идущие в комплекте с устройством. Использование непроверенных кабелей для быстрой зарядки может привести к повреждению как кабеля, так и зарядного устройства или самого смартфона.

Существует множество стандартов быстрой зарядки, и для их работы необходимо, чтобы и ЗУ, и заряжаемое устройство поддерживали один стандарт. Поэтому, если вы планируете применять приобретаемое зарядное устройство для быстрой зарядки гаджета, убедитесь, что оно поддерживает нужный стандарт:

  • Adaptive Fast Charging применяется для зарядки гаджетов компании Samsung с 2015 года. Используется, в основном, в топовых моделях линеек S, Note, A и некоторых других;
  • Huawei Fast Charge и Huawei Super Charge, как видно из названия стандарта, применяется на устройствах Huawei;
  • Pump Express разработан компанией MediaTek и поддерживается современными смартфонами, собранными на базе SoC этого производителя — к таковым относятся многие китайские смартфоны;
  • Quick Charge — стандарт компании Qualcomm, поддерживается устройствами, собранными на базе чипсетов Snapdragon, начиная с 2013 года.
  • Spreadtrum Fast Charge Protocol, соответственно, поддерживается на чипсетах Spreadtrum.
  • Power Delivery — наиболее перспективный протокол быстрой зарядки, разработанный консорциумом USB в 2015 году. На настоящий момент используется гаджетами Apple, Xiaomi, Sony и др. Quick Charge версии 4.0 также полностью совместим с Power Delivery.
  • VoltiQ — «урезанный» стандарт Quick Charge, позволяющий менять только ток зарядки (но не напряжение). Стандарт поддерживается производителем зарядок Tronsmart и был разработан в 2014 году для устранения перегрева первых смартфонов, использующих стандарт Quick Charge 2.0. Зарядка с использованием VoltiQ чуть медленнее, чем с QuickCharge, но безопаснее для старых смартфонов (особенно на базе Snapdragon 810).

Варианты выбора сетевых зарядных устройств

Зарядное устройство с разъемом USB — наиболее универсальный вид «зарядок» на сегодняшний день — большинство мобильных устройств либо могут заряжаться от этого разъема, либо имеют переходник на него.

Зарядные устройства с разъемом Lightning предназначены для зарядки гаджетов Apple.

Если вы хотите заряжать одновременно несколько устройств, выбирайте среди ЗУ с несколькими портами.

Чтобы ускорить зарядку гаджета, воспользуйтесь ЗУ с поддержкой быстрой зарядки — только убедитесь, что ваш гаджет поддерживает тот же стандарт и используйте «родной» кабель.

Для зарядки гаджетов с аккумуляторами большой емкости (планшетов, ноутбуков) выбирайте среди ЗУ большой мощности — они способны «давать» большой ток и напряжение.

Источник