Меню

Подборка модулей преобразователей напряжения для сборки DIY регулируемого блока питания

Лабораторные блоки питания 2189

Одноканальные источники питания

Линейные источники питания мощностью до 1000Вт

Программируемые источники питания

Многоканальные источники питания

Системные источники питания

Аксессуары к лабораторным блокам питания

Лабораторные блоки питания представляют собой стабилизированные регулируемые источники питания, обеспечивающие высокую точность выходного сигнала при изменении параметров нагрузки и питающего напряжения в широких пределах.

По схемному построению лабораторные блоки питания делятся на линейные и импульсные. Схема линейного источника состоит из мощного сетевого трансформатора, выпрямителя и стабилизатора. Такие блоки питания характеризуются минимальным уровнем шумов, создают минимальные помехи в сетях электропитания, но имеют большие ве c и габариты, низкий КПД.

Импульсные лабораторные блоки питания сначала выпрямляют сетевое напряжение на входе, затем преобразуют его в переменное напряжение высокой частоты, далее снова выпрямляют и стабилизируют. Такая схема позволяет уменьшить габариты и вес силового трансформатора и соответственно самого блока, повысить КПД, но создает электромагнитные помехи в цепях питания.

Купить лабораторные блоки питания можно с одним выходным каналом или несколькими. Программируемые блоки питания позволяют моделировать различные режимы работы для проведения лабораторных испытаний.

Источники могут иметь различные дополнительные функции: высокоскоростное управление, интерфейсы передачи данных, усиленную изоляцию, энкодеры, устройство задания последовательности, поглотители энергии и прочие.

Основными поставщиками лабораторных блоков питания являются: Tektronix, Keithley, QJE, Good Will, Mastech, Rohde & Schwarz, АКИП, Мегеон,Rigol.

Посмотреть и купить товар вы можете в наших магазинах в городах: Москва, Санкт-Петербург, Архангельск, Барнаул, Белгород, Владимир, Волгоград, Вологда, Воронеж, Гомель, Екатеринбург, Иваново, Ижевск, Казань, Калуга, Кемерово, Киров, Кострома, Краснодар, Красноярск, Курган, Курск, Липецк, Минск, Набережные Челны, Нижний Новгород, Новосибирск, Омск, Орёл, Пермь, Псков, Ростов-на-Дону, Рязань, Самара, Саранск, Саратов, Смоленск, Ставрополь, Тверь, Томск, Тула, Тюмень, Уфа, Чебоксары, Челябинск, Ярославль. Доставка заказа почтой, через систему доставки Pickpoint или через салоны «Связной» в следующие города: Тольятти, Барнаул, Ульяновск, Иркутск, Хабаровск, Владивосток, Махачкала, Томск, Оренбург, Новокузнецк, Астрахань, Пенза, Чебоксары, Калининград, Улан-Удэ, Сочи, Иваново, Брянск, Сургут, Нижний Тагил, Архангельск, Чита, Курган, Владикавказ, Грозный, Мурманск, Тамбов, Петрозаводск, Кострома, Нижневартовск, Новороссийск, Йошкар-Ола и еще в более чем 1000 городов и населенных пунктов по всей России.

Товары из группы «Лабораторные блоки питания» вы можете купить оптом и в розницу.

Источник

Подборка модулей преобразователей напряжения для сборки DIY регулируемого блока питания

Регулируемый блок питания (его еще называют лабораторный) — полезный инструмент не только для профессионального ремонтника, но и для бытового использования.

Сегодня рассмотрим модули DC-DC преобразователей для сборки своего регулируемого блока питания из готовых компонентов. Модули будут на разное напряжение и ток и с разными возможностями. Для готового изделия Вам понадобится такой модуль, первичный блок питания и корпус.

Рассмотрим проверенные варианты модулей с большим количеством заказов.

RuiDeng RD60ХХ

Открывает подборку наиболее функциональные модули на сегодняшний день — DC-DC модули от Ruideng Technologies (RD), серия 60ХХ. Модульная конструкция, большой экран 2.4″ и удобное управление!

Как следует из маркировки модуля, 60 — это максимальное выходное напряжение 60 В, а 6-12-18 А это максимальный ток в режиме СС. Выбираем под свои нужды. Модуль с литерой W с wifi для беспроводного управления.

У этого модуля отличный функционал:

  • Высокая точность по току и напряжению
  • ПО для ПК и мобильное приложение
  • Измерение емкости аккумуляторов
  • Обновление прошивки
  • Память уставок

Для этих модулей продаются специально разработанные корпуса и первичные импульсные источники питания — собрать свой регулируемый блок питания можно легко, как конструктор. А главное на выходе отличный результат и стабильное напряжение с низкими пульсациями.

Преобразователь 50 В 20 А

Модель на 1000 Вт 20 А, для тех кому нужен максимальный ток. И при этом за разумную цену!

Преобразователь состоит из двух функциональных блоков — встраиваемый модуль с экраном и плата преобразователя, соединённых шлейфами.

  • Диапазон входного напряжения: 6-55,00 В
  • Разрешение напряжения: 0,01 В
  • Диапазон выходного напряжения: 0-50,00 В
  • Разрешение напряжения: 0,01 В
  • Диапазон выходного тока: 0-20.00A
  • Разрешение выходного тока: 0.01A
  • Точность входного напряжения: ±(1% + 5 цифр)
  • Точность выходного напряжения: ±(0.3% + 5 цифр)
  • Точность выходного тока: ±(0.5% + 5 цифр)
  • Выходные пульсации: 150 мВ

DPS5020

Тоже модуль на 1000 Вт 20 А, но от производителя RD. Состоит из двух блоков, связанных шлейфом и дополнительных модулей связи.

В лоте три варианта:

  • Без поддержки приложения
  • С модулем USB, приложение на ПК
  • С модулем bluetooth, мобильное приложение

Дисплей модуля управления 1.44″ цветной LCD, что повышает наглядность данных.

Возможность зарядки аккумуляторов присутствует.

Для этого модуля так же продается готовый корпус, что сильно облегчает пользователю сборку готового блока питания.

DPS8005

Модуль от RD на 80 В выходного напряжения, но ток до 5 А. Для тех, кому мало 50 или 60 В.

В лоте есть возможность выбора типа коммуникации, либо вообще без нее.

  • Диапазон выходного напряжения: 0-80.00 В
  • Выходной ток: 0-5.100 А
  • Выходной диапазон мощности: 0-408 Вт
  • Точность установки напряжения: ± (0.5% + 2 разряда)
  • Точность установки тока: ± (0.8% + 3 разряда)
Читайте также:  Переделка блока питания зарядника

Качество изделий от RD стабильное, вы гарантированно получите хороший результат.

Повышающий модуль 900 Вт

Повышающий напряжение модуль. Если нужно поднять напряжение до 120 В.

Входное напряжение 8-60 В повышается до 10-120 В, ток до 15 А. КПД 85%.

Рабочая частота преобразования: 150 кГц

Размеры платы: 110х99х46 мм. Кнопки управления и экран установлены на самой плате. Есть вентилятор для активного охлаждения.

XYS3580

Завершает подборку бюджетный модуль до 36 В 5 А с технологией SEPIC. Построен на чипе XL1509
ШИМ контроллер FP5139. Блок питания на основе этого модуля на заглавном фото.

На основе этого преобразователя и импульсного блока питания 36 В 5 А можно создать довольно компактный регулируемый блок питания 180 Вт.

Экран цветной размером 1.44″, управление осуществляется кнопкой и нажимным энкодером. Размеры панели: 79х42 мм

Из приятных бонусов:

  • 10 ячеек памяти
  • Возможность заряжать аккумуляторы
  • Хорошая точность установки параметров
  • Активное охлаждение и встроенные защиты

Надеюсь, подборка модулей DC-DC преобразователей напряжения была полезна и Вы выберете себе вариант для своего самодельного блока питания с необходимыми функциями.

Источник

Самодельный лабораторный блок питания

Когда то у меня был советский источник питания Б5-47, он очень громко и противно пищал, грелся, периодически из него шел дым. Таким образом пользование сей девайсом более 5 минут причиняло просто невыносимые моральные страдания. Явно он был неисправен. Вскрытие показало что лучше его сразу выбросить и забыть. К тому же его интерфейс управления мне никогда не нравился, юзабельность тоже оставляла желать лучшего. Понятно, что без нормального БП жизнь скучна, решил быстренько сделать БП из того что было под рукой. В итоге изготовление данной конструкции по разным причинам затянулось аж на 2 года. Собственно вот результат:

Требования были следующие: регулируемое выходное напряжение до 30 В с регулируемым токоограничением до 5 А. Разумеется должна применяться цифровая индикация. Дизайн должен напоминать MASTECH HY3005D и им подобные. Единственное — мне никогда не нравилось что первый прибор показывает ток. Ну неправильно это — напряжение всегда первично, соответственно первый прибор должен показывать именно напряжение.

Первоначально проектировал схему на базе линейного стабилизатора К142ЕН2А, но в итоге отказался от этой идеи — низкий КПД, регулирующий силовой транзистор сильно грелся даже с учетом того что был предусмотрен переключатель отпаек на вторичной стороне трансформатора. Да и вообще всё как-то криво работало. Пришлось выпилить.

Второй вариант схемы разработал на базе легендарного ШИМ-контроллера TL494, который в разных вариациях встречается во многих компьютерных блоках питания. На этот раз всё получилось как надо.

Вкратце о конструкции:

Принципиальная схема (кликабельно)

Как уже говорил — девайс собрал из запчастей, большинство которых были в радиусе 5 метров от меня.

Понижающий трансформатор нашелся под столом, марки я его не знаю. Напряжение на вторичке около 40 В.
D1 — TL494, VD1 — диод шоттки и тороидальный дроссель L1 выпаял из неисправного компьютерного блока питания: диод шоттки используется в схеме выпрямления, он установлен на радиаторе возле импульсного трансформатора, тороидальный дроссель расположен рядом с ним.
LM358 — весьма хороший и распространенный операционный усилитель. Продаётся почти на каждом углу. Рекомендован к приобретению.
Шунт R12 — взял из какого-то старого связисткого оборудования: представляет собой 3 толстых изогнутых проволочки.

Резисторы R9, R10 используются для регулирования выходного напряжения (грубо, точно). Резисторы R3, R4 используются для регулирования токоограничения (грубо, точно).
При наладке БП подстроечным резистором R15 регулируется порог переключения светодиодной сигнализации. Еще возникли проблемы с интегральным стабилизатором 7805 — при входном напряжении около 40 В он начинал ужасно глючить — просаживал выходное напряжение, решил проблему установив по входу 1 Вт гасящий резистор R13.

Сам корпус взят от древнего самопишущего регистратора. Компоновка получилась следующей — в середине корпуса установлен силовой трансформатор, который вошел туда как родной, видимо они были созданы друг для друга. В передней части БП расположена электронная схема управления, органы управления и сигнализации. В задней части корпуса расположена вся силовая электроника. Таким образом трансформатор как бы делит БП на 2 части — слаботочную и силовую.

Передняя часть корпуса с откинутой лицевой крышкой. Цифровые измерительные приборы приехали из Китая, они заводского производства. Электронная схема управления состоит из 2 плат: плата регулятора напряжения — TL494 c обвязкой, и плата сигнализации — включает в себя микросхемы D3,D4. Почему не сделал на одной плате? Просто сигнализацию я делал несколько позже чем регулятор, и отдельно доводил её «до ума». Там тоже были свои заморочки.

Задняя часть корпуса. На общем радиаторе установлены диодный мост KBPC 3510, силовой транзистор КТ827А, дроссель L1, шунт R12. Всё это дело изнутри обдувается 12 сантиметровым вентилятором. В задней части корпуса установлены также предохранители, сглаживающие конденсаторы C1, C4 и маленький вспомогательный импульсный блок питания для работы вентилятора и цифровых измерительных приборов.

Читайте также:  Блоки питания для мониторов как подобрать

Конечно, можно было бы купить фирменный БП и не городить огород. Но иногда хочется самому поизобретать велосипед

Если кто-то задумает повторить конструкцию вот здесь выложил принципиальную схему в высоком разрешении и чертежи печатных плат в формате Sprint Layout.

По прошествии времени пользователи в комментариях поделились своими модификациями блоков питания. Рассмотрим подробнее предложенные варианты. Обсуждение всех конструкций по-прежнему доступно в комментариях

Предложена

Драйвер полевика (точнее, двух параллельно — выравниванием токов занимаются сами полевики) запитан от отдельного источника 15в. У себя взял промагрегат 9-36в/15в TEN 12-2413. От него же запитаны кулеры.
TL494 запитана от отдельного источника 24 в.
Потенциометр вольтажа любой, замер тока с шунта амперметра. Трансформатор выдает 34 в, выпрямленного около 45.
Проблема мощности упиралась в дросселе. Если 5-амперник нормально шел, то 20 помучал.
Практическим путем нашел вариант два параллельно на кольцах от компового. 23 витка проводом 1,15мм.

Внешний вид конструкции

Предложена

Недавно натолкнулся на эту статью про ЛБП на TL494. Загорелся желанием собрать БП по этой схеме, тем более уже давно валялся трансформатор от польского блока питания на 24в и 4а. Вторичка выдает 34в переменки, после моста с кондером 10000х63в — 42в. Собрал навесным монтажом по этой схеме, включил и сразу дым из 494-й. Все проверил, заменил микросхему, включаю — на холостом работает, на выходе напряжение пытается регулироваться, прикоснулся к 494 — горячая! Добавил номинал 4.7к резистору R1 — блок работает, но стоило подключить лампочку 24в 21вт, как взорвалась микросхема в районе 9, 10 ножки. Отмотал с вторичной обмотки транс-ра несколько витков (снизил напряжение на 4 вольта) и все равно горят микросхемы. Питание на 8,11,12 ноги подавал 12в с другого БП, мотал дроссель разным по диаметру проводом и количеством витков — толку нет (сжег 6 микрух). У меня есть кой — какой опыт по переделке компьютерных блоков в зарядные устройства и регулируемые блоки питания на основе TL494 и ее аналогах. Начал собирать обвязку ШИМа по схемам к комповым БП. Изменил управление силовым транзистором, подал питание на ШИМ от отдельного источника на 12в (переделал зарядку от сотового телефона) и все — блок заработал! Пару дней настраивал на регулировки и свист дросселя (оссцила нет) теперь надо отлутить плату управления и можно собирать в корпус.

Сегодня настраивал свой БП. Спасибо большое

shc68 за подсказку проверять пульсации на выходе динамиком если нет осциллографа. При малой нагрузке (лампочка 12в, 21вт) из динамика слышался гул и вой когда крутил регулятор тока. Устранил это безобразие установкой дополнительных конденсаторов (на схеме обведено красным цветом).
Как рекомендовал

Внешний вид конструкции

Предложена

За основу была взята схема с полевиком https://ic.pics.livejournal.com/rond_60/78751049/3328/3328_original.jpg
При отладке появились проблемы с управлением полевика через трансформатор. На небольших токах нагрузки он работал, при увеличении более 2 ампер происходил срыв и падение тока (при скважности ШИМ > 30%). Пришлось убрать трансформатор и вместо него поставить оптодрайвер ACPL3180 с питанием от отдельной обмотки трансформатора.
Сделал 2 независимых канала с регулировкой напряжения до 30V и ограничения тока до 10A. Второй канал запустился сразу, только пришлось подстроить максимальные значения напряжения и тока. Регулировочные резисторы — 10 оборотные
https://ru.aliexpress.com/item/Free-Shipping-3590S-2-103L-3590S-10K-ohm-Precision-Multiturn-Potentiometer-10-Ring-Adjustable-Resistor/32673624883.html?spm=a2g0s.11045068.rcmd404.3.de3456a4CSwuV3&pvid=b572f0cb-2d84-4353-a657-a28824b99672&gps-id=detail404&scm=1007.16891.96945.0&scm-url=1007.16891.96945.0&scm_id=1007.16891.96945.0
В качестве V-A метра применён китайский модуль
https://ru.aliexpress.com/item/DC-100-10A-50A-100A/32834619911.html?spm=a2g0s.9042311.0.0.466b33edLWGUwZ с доработкой, достигнута точность показаний 2% при больших токах и 10 мА при токах до 1А.
Радиатор на транзисторе и диоде один от компьютерного блока питания. При нагрузке на лампу 15V 150W он нагревается до 80 градусов (больше греется диод). Настроил включение вентилятора охлаждения на 50 град. (один на 2 канала)
Окончательная схема одного канала

Rшунт 0,0015 Ом — Это встроенный шунт прибора, к нему добавляются сопротивление проводов от индикатора до клемм XS104 и «-«, при большом токе они оказывают значительное влияние. Провод 1,5 кв.мм
Настройка:
1 Запускаем задающий генератор на TL494 и драйвер с отключенным затвором VT101. На выходе драйвера будет ШИМ около 90%. Настраиваем частоту TL в пределах 80 — 100 кГц подбирая R107
2 Подключаем затвор транзистора (для подстраховки питание +45 подаём через токоограничивающий балласт, я брал 2 лампы 24V 150W последовательно) и смотрим выход БП. Подключаем небольшую нагрузку (я брал 100 Ом). Если напряжение на выходе регулируется то устанавливаем максимальное значение выхода с помощью R122.
3 Убираем токоограничивающий балласт, нагружаем выход сильнотоковой нагрузкой (я брал лампу 15V 150W) и настраиваем максимальный ток в нагрузке: R106 постепенно выводим в нижнее по схеме положение, подбираем R104 и R105 добиваясь срабатывания защиты по току (у меня ограничение по току 10А). При сработке токовой защиты регулировка напряжения с помощью R101 в большую сторону не приводит к его росту на выходе.
4 Узел индикации на операционнике и светодиодах не нуждается в настройке (его единственный недостаток — небольшая подсветка красного светодиода когда горит зелёный, можно исправить включив последовательно с красным обычный диод.
5 настраиваем Р101 на нужную температуру срабатывания вентилятора нагрузив блок питания на приличную нагрузку измеряя температуру диода и транзистора на радиаторе.

Читайте также:  Лабораторный блок питания ELEMENT 305DB программируемый 30V 5A

Источник



Плата управления лабораторного блока питания

Встраиваемая универсальная плата управления лабораторными блоками питания.

Автор: Провада Юрий Петрович aka Simurg
Опубликовано 16.09.2010

Здравствуйте, ребята. Представляю Вашему вниманию несколько лабораторных блоков питания, построенных на одной плате управления. Как известно импульсные блоки питания имеют большой уровень помех в широком диапазоне частот и не годятся для настройки чувствительных к помехам конструкций. Моя концепция по лабораторным источникам такая: лабораторных источников питания у радиолюбителя-ремонтника должно быть три. Один маломощный с очень чистым выходом, второй мощный, можно импульсный, без высоких требований к выходному напряжению, третий средней мощности с большим диапазоном регулировки напряжения, от 0 вплоть до 150 вольт 1 ампер. Все должны иметь независимую регулировку тока и напряжения и регулироваться от 0 до нужного вам напряжения. Объединить в одном блоке эти требования сложно, поэтому рассмотрим несколько схем и вариантов лабораторных блоков питания.

1. Маломощный лабораторный блок питания с чистым выходом.
БП разрабатывался как универсальный лабораторный источник питания в для работы над маломощными и среднемощными поделками. Импульсные схемы сразу не рассматриваются из-за их шумности. Импульсный БП он всё же остается импульсным — принцип работы основан на переключении компаратора когда напряжение выше или ниже нормы. Оно никогда не равно. Пульсации из-за этого есть всегда. КПД здесь значения не имеет, так как питается от сети, главное качество и чистота выходного напряжения. Перепробовал много схем. Но что-то ничего не понравилось. Или в стиле КРЕНки + транзистор, или ток не регулируется. Цель БП с регулировкой напряжения от 0 Вольт, с плавной регулировкой и регулируемого стабилизатора тока и включаемой по желанию триггерной защитой защиты по току, с индикацией выходного напряжения и тока.
Этот лабораторный блок питания способен обеспечить стабилизацию как тока, так и напряжения. Основой его служит электронный стабилизатор — именно он определяет все выходные параметры устройства. При сравнительной схемной простоте стабилизатор имеет хорошие параметры, прост в эксплуатации.
Основные технические характеристики :
в режиме стабилизации напряжения
Выходное напряжение, В, при токе нагрузки 5 А. 0. 38
Коэффициент стабилизации. 500. 1000
Напряжение пульсаций, мВ, не более. 3
Выходное сопротивление, 0м. 0,08

в режиме стабилизации тока
Выходной ток, А . . 0,00. 5
Выходное сопротивление, кОм, не менее. 2
Напряжение пульсаций, мВ, не более. 3

При замыкании выходной цепи устройство остается в режиме стабилизации установленного тока, а выходное напряжение уменьшается до нуля. Поэтому перегрузка по току устройству не грозит. После устранения причины замыкания или уменьшения тока нагрузки ниже установленного устройство автоматически переходит в режим стабилизации напряжения, светодиод стабилизатора тока гаснет, а светодиод стабилизатора напряжения загорается. Такое качество лабораторного блока питания позволяет устанавливать для каждого конкретного случая свое значение максимально достижимого тока нагрузки и тем самым обеспечить защиту от перегрузки как испытуемого устройства, так и самого блока. Имеет режим триггерной защиты, когда при превышении тока нагрузка автоматически обесточивается. Блок позволяет получать и меньшее, чем 0,01 А, значение стабилизируемого тока, но в этом случае необходимо обеспечить более плавное регулирование напряжения на инвертирующем входе ОУ DA3. Это можно, например, сделать включением переменного резистора сопротивлением 100 Ом между нижним по схеме выводом резистора R10 и корпусом.
Схема

Блок на триггере обеспечивает коммутацию выхода одной кнопкой и отключение выхода при работе триггерной защиты.

Индикация выполнена по классической схеме на ПВ2.
Фото платы управления блоком питания во второй части. Она одинаковая для всех блоков питания.

2. Мощный импульсный лабораторный блок питания.
Переделка компьютерного блок питания в лабораторный известна всем. Мощность блока питания, который получится в результате переделки — 220Вт. Напряжение от 0 до 22В, и подойдет для зарядки аккумуляторов — там необходимо напряжение порядка 16В.
Основные технические характеристики :
в режиме стабилизации напряжения
Выходное напряжение, В, при токе нагрузки 10 А. 0. 22
Коэффициент стабилизации. 200. 300
Напряжение пульсаций, мВ, не более. 200
Выходное сопротивление, 0м. 0,2

в режиме стабилизации тока
Выходной ток, А . . 0. 10
Напряжение пульсаций, мВ, не более. 300

Источник