Меню

Отличия суперконденсаторов от аккумуляторов

Муки выбора: литиевая батарея или суперконденсатор

Аккумуляторные батареи используются в подавляющем большинстве гибридных авто либо чистых электромобилях. Суперконденсаторы называют соперниками аккумуляторов, но пока о них больше разговоров, а в реале применяют эти устройства редкие производители транспортной техники на электротяге.

Один из них – BKM Holding, более известный в Минске, где предприятие расположено, как «Белкоммунмаш». Выпускает завод троллейбусы и электробусы. Об электробусе Е321 и пойдет речь.

Это новая модель, которую представили в прошлом году. Первые экземпляры Е321 были оснащены суперконденсаторами. По сравнению с аккумуляторами в преимуществах у суперконденсаторов возможность перезарядки хоть миллионы раз или, говоря проще, неограниченный жизненный цикл. Стабильность параметров независимо от температурных условий окружающей среды тоже достоинство суперконденсаторов. Однако на днях BKM Holding, как сообщает ABW.BY , представил другую модификацию Е321, которую вместо суперконденсаторов оборудовал литиевыми батареями. Вопрос – почему?

Ответ найдем, если взглянем на недостатки суперконденсаторов. Это низкая удельная энергоемкость, высокий саморазряд, низкое напряжение одной ячейки, что требует соединения в блок нескольких ячеек. Есть и другие недостатки, но именно упомянутые стали причиной того, что новую версию электробуса оснастили аккумуляторами.

Как объяснил директор «Белкоммунмаша» и главный конструктор Олег Быцко , литиевые батареи обеспечат электробусу больший запас автономного хода – до 50 км на одной зарядке. В Минске на конечной остановке электробус с суперконденсаторами должен потратить 6-8 минут на подзарядку. Варианту на литиевых батареях для полной зарядки требуется столько же, однако он может в случае необходимости сократить время подзарядки и отправиться на маршрут строго по расписанию, а недостающий запас энергии пополнить позже, во время следующей подзарядки. Благодаря этому водителям будет проще поддерживать график движения на маршруте.

Впрочем, главное в том, что чтобы довести автономию транспортного средства до 50 км, необходимых для такого города, как Минск, пришлось бы увеличивать суперконденсатор. Это вызвало бы увеличение стоимости, а из-за невысокой удельной энергоемкости суперкондесаторы и так недешевы. То есть «Белкоммунмаш» наступил на те же грабли, которые побуждают других производителей при одинаковой цене выбирать более емкие литиевые батареи.

Итак, в столице Беларуси суперконденсаторы себя не оправдали, однако в то же время совсем от них завод отказываться не собирается. Кроме того на предприятии разработан электробус с ночной зарядкой и автономным ходом более 200 км. Спрашивается – зачем?

Дело в потенциальных заказчиках, а запросы у них разные в зависимости от того, в каких условиях тот или иной заказчик собирается эксплуатировать технику. Со слов Олега Быцко, в каждом конкретном проекте приходится решать конкретную задачу. Тот же пробег легко варьируется емкостью батарей: чем она больше, тем больше пробег. Однако тем больше становится и снаряженная масса. А чем больше масса электробуса, тем меньше пассажировместимость. Поэтому добавление в товарную линейку электробусов модели Е321 варианта с литиевыми батареями при сохранении версии с суперконденсаторами выглядит логичным, так как дает BKM Holding возможность предусмотреть любые запросы, которые на сегодняшний день бывают у заказчиков, и участвовать во всех проводимых тендерах с электробусной тематикой.

Конструктивно модель на литиевых батареях не сильно отличается от версии на суперконденсаторах. Сохранилась та же система быстрой подзарядки, позволяющая пополнять запас энергии на конечных остановках маршрута от существующих зарядных станций с помощью расположенного на крыше полупантографа. Кроме того, предусмотрена также зарядка литиевых батарей в парке: в течение 20 минут в удобное для транспортников время (сразу после смены или ночью). Использование действующей зарядной инфраструктуры Минска позволит обеспечить для нового электробуса суточный пробег до 300 км.

Останется прежней и компоновка салона: 30 мест для сидения и большая накопительная площадка, на которой можно разместить сразу две инвалидных коляски. Но отделка и оснащение салона будут проще, чем у первого выставочного экземпляра. Например, сиденья и поручни «Минсктранс» заказал такие же, как и на поставленных ранее в столицу Беларуси электробусах. Тем не менее кондиционер в салоне, «теплые» кнопки в дверях, USB-розетки, WiFi-роутер и медиасистема – все это будет и в электробусах на «литие».

Источник



Ионисторы (суперконденсаторы) – устройство, виды, применение

В настоящее время получили широкое распространение устройства, потребляющие высокую мощность в течение короткого интервала времени, например, электронные замки, реле, двигатели, импульсные излучатели. Для них не всегда можно использовать аккумуляторную батарею в качестве буферного источника энергии. Могут возникнуть сложности с формированием мощных кратковременных токов. Для таких ситуаций стали использовать ионисторы или суперконденсаторы, которые можно устанавливать вместо аккумулятора или в комбинации с ним. Для изготовления этих элементов применяется технология, основанная на использовании эффекта образования двойного электрического слоя. Этим они выгодно отличаются от батарей и аккумуляторов.

Промышленные ионисторы появились не так давно, но их массовым производством уже занимаются, как отечественные, так и зарубежные производители.

Что такое суперконденсаторы

Энергоемкие системы выдвигают высокие требования к источникам питания. Для различного современного оборудования требуется аккумулирование и подача определенной энергии. Чтобы решить такую задачу, используются аккумуляторы или подсоединенные к батарее суперконденсаторы. В последнем варианте ионисторы (молекулярные накопители энергии) играют роль страховки при падении напряжения. Суперконденсаторы отличаются небольшой плотностью энергии и высокой мощностью, что обеспечивает эффективную разрядку на нагрузку. При включении прибора параллельно батарее, снижается импульсная нагрузка на неё, что позволяет продлить срок службы.

Суперконденсаторы представляют собой электрохимические конденсаторы с большими показателями удельной мощности. Они отличаются лучшими техническими характеристиками, чем аккумуляторы. Эти элементы быстрее заряжаются и разряжаются.

В дальнейшем разработчики планируют этими устройствами полностью заменить аккумуляторные батареи. Они могут стать альтернативными источниками питания в разных сферах, например, в производстве автомобилей. Суперконденсаторы применяют в ветроэнергетических конструкциях и солнечных батареях. Подобные приборы представляют собой сочетание стандартного конденсатора и аккумуляторной батареи.

Одно из отличий ионисторов от обычных конденсаторов – наличие двойного электрического слоя, что позволяет накапливать значительное количество энергии. В конструкции отлично сочетаются такие характеристики, как скорость зарядки и разрядки конденсатора и емкость аккумулятора. От обычных конденсаторы такие устройства отличаются отсутствием обычного диэлектрика между электродами.

Параметры

Ионисторы отличаются следующими характеристиками:

  1. Внутреннее сопротивление (измеряется в миллиОмах).
  2. Максимальный ток. (А).
  3. Номинальное напряжение (В).
  4. Емкость (Ф).
  5. Параметры саморазряда.

В качестве электродов в приборе применяется активированный уголь или углерод на вспененной основе. Эти компоненты помещаются в электролит. Сепаратор предназначен для защиты устройства от короткого замыкания электродов. В современных устройствах не используется электролит на основе кислоты или кристаллического раствора щелочи, так как данные компоненты обладают высоким уровнем токсичности.

Во внутренних полостях конструкции содержится электролит, запасающий электроэнергию при взаимодействии с пластинами.

Первые электрохимические ионисторы (молекулярные накопители энергиибыли) разработаны более 50 лет назад. Они были изготовлены на основе пористых углеродных электродов. В настоящее время они используются в некоторых электрических приборах.

По сравнению с литий – ионными аккумуляторами современные ионисторы характеризуются большим ресурсом и высокой скоростью разряда.

При использовании ионисторов можно добиться более экономичного режима работы за счет аккумулирования излишков энергии.

Между обкладками конструкции располагается не стандартный слой диэлектрика, а более толстая прослойка, позволяющая получить тонкий зазор. При этом прибор обеспечивает возможность получения электроэнергии в больших объемах. Суперконденсатор аккумулирует и расходует заряды быстрее, чем альтернативные варианты. Двойной слой диэлектрика увеличивает площадь электродов. Это позволяет улучшить электрические характеристики.

Отличия суперконденсаторов от аккумуляторов

Суперконденсаторы часто применяются вместо батарей. Стандартные конденсаторы способны хранить небольшое количество электроэнергии. Суперконденсаторы могут накапливать заряды в тысячи, миллионы и миллиарды раз больше. Подобные приборы работают быстрее батарей. Это обусловлено тем, что суперконденсатор создает статистические заряды на твердых телах, а батареи зависят от медленно протекающих химических реакций.

Батареи характеризуются более высокой плотностью энергии, а ионисторы более высокой плотностью мощности. Суперконденсаторы способны функционировать при низких показателях напряжения, а для получения большего напряжения, их нужно последовательно соединить. Такой вариант необходим для более мощного оборудования.

Технология ионисторов может найти применение в энергетике и приборостроении. Одно из применений – использование в ветряных турбинах. Подобные приборы помогают сгладить прерывистое питание от ветра.

В портативных электронных приборах используются источники питания разнообразных типов. В таких устройствах, как планшеты, смартфоны и ноутбуки важное значение имеет удельная энергоемкость. Чем больше данный показатель, тем выше будет емкость устройства при тех же физических параметрах.

Установка прибора с более значительной удельной энергоемкостью позволит увеличить время работы мобильного оборудования, не увеличивая его параметры. Поэтому в смартфонах часто используются полимерные аккумуляторные батареи, которые являются лидерами в малогабаритных перезаряжаемых источниках питания.

Аккумуляторные батареи обладают ограниченным ресурсом. При интенсивном применении ресурс прибора является критичным фактором, который сокращает жизненный цикл оборудования. Поэтому к более перспективным устройствам относятся ионисторы. Они представляют собой идеальный накопитель электроэнергии.

Ионистор похож на электролитический конденсатор, но при тех же размерах имеет большую емкость. Подобные устройства могут накапливать большое количество энергии за короткий промежуток времени, что позволит сократить время подзарядки до минимального значения. Суперконденсаторы могут выдержать без видимой деградации несколько десятков тысяч циклов.

Благодаря незначительной токсичности материалов для изготовления ионисторов, их легче утилизировать, чем аналогичные варианты. Но из-за большого тока саморазряда данные приборы не годятся для очень продолжительного хранения электроэнергии. Ионисторы отлично подходят для беспроводных периферийных устройств. Здесь проявляют себя такие свойства, как эффективность и высокая скорость заряда.

Читайте также:  Что вырабатывает автомобильный аккумулятор

Беспроводное устройство с ионистором требует ежедневной подзарядки. Но на данную процедуру потратится несколько минут.

Разновидности

Суперконденсаторы бывают следующих видов:

  1. Псевдоконденсаторы оснащены твердыми электродами. Емкость зависит не только от электростатических процессов, но и от фарадеевских реакций с перемещением зарядов.
  2. Гибридные представляют собой переходное устройство между аккумулятором и конденсатором. Они способны накапливать и отдавать заряд в двойном электрическом слое. Электроды делаются из различных материалов, а скопление зарядов произвоится по разным механизмам. Окислительно – восстановительные реакции повышают удельную емкость механизма.
  3. Двухслойные суперконденсаторы состоят из пористых электродов, разделенных сепаратором. Электрический заряд в таких устройствах определяется емкостью двойного электрического слоя. Электролит является соединяющим проводником с ионной проводимостью.

Суперконденсаторы бывают разных форм и размеров. Основное назначение таких устройств – это дублирование главного источника при падении напряжения.

Для создания гибридных устройств применяются катоды особого вида. Их делают из графена гипероксидированного типа. Графен представляет собой двумерную модификацию углерода, в которой атомы размещены в один слой. Данный компонент отличается высокой химической стойкостью.

Принцип действия

Принцип действия ионистора похож с обычным конденсатором. Но эти приборы различаются применяемыми материалами. Обкладки делаются из пористого материала, который представляет собой отличный проводник. Это позволяет увеличить емкость устройства. В качестве диэлектрика применяется электролит, что позволяет уменьшить расстояние между обкладками и повысить емкость.

В суперконденсаторе заряд накапливается в результате формирования двойного электрического слоя на электроде при адсорбции ионов из электролитов.

В основе принципа работы – разложение разности потенциалов к токовыводам. При этом на катоде создаются отрицательные ионы, а на аноде – положительные. Сепаратор пропускает ионы электролита и предотвращает короткое замыкание между электродами. Электричество сохраняется статическим способом. В процессе заряда-разряда отсутствуют реакции электрохимического типа.

Суперконденсаторы способны накапливать большое количество энергии за короткий промежуток времени, что позволяет уменьшить время для подзарядки приборов.

Современные ионные аккумуляторы могут отдавать только 60 % электроэнергии, израсходованной на их зарядку. У суперконденсаторов данный показатель превышает 90 %. Другим важным преимуществом является большой ресурс. У многих видов аккумуляторов уменьшение емкости происходит после нескольких сотен циклов разряда – разряда. А ионисторы выдерживают до миллиона циклов без нарушений.

Конструкции элементарных ячеек позволяют создать модули различных размеров и любого напряжения. Устройства могут быть выполнены с охлаждением разного типа – воздушного, водяного и естественного.

Плюсы и минусы

Стоит выбрать суперконденсаторы, ради следующих преимуществ:

  1. Заряд и разрядка происходит быстро. Их можно применять, когда нет возможности поставить аккумулятор из – за продолжительной подзарядки.
  2. Ионисторы обладают большим количеством циклов заряда-разряда по сравнению с другим оборудованием.
  3. Для проведения подзарядки не требуются специальные устройства, что облегчает обслуживание.
  4. Приборы легче аккумуляторов и отличаются меньшими размерами.
  5. Обширный диапазон рабочих температур от -45 до 70 градусов.
  6. Продолжительный срок эксплуатации по сравнению с аккумуляторными батареями.
  7. Высокие значения емкостной плотности и КПД циклов разрядки.
  8. Экологическая чистота, долговечность и надежность.
  9. Превосходные параметры удельной мощности.
  10. Допускается полная разрядка.

Некоторые минусы вызывают сложности с эксплуатацией:

  1. Дорогостоящие элементы.
  2. Невысокие характеристики номинального напряжения. Чтобы справиться с проблемой требуется последовательное соединение нескольких элементов.
  3. При несоблюдении температурного режима устройство может быстро сломаться.

Устройство должно быть защищено от короткого замыкания, т.к. это может вызвать повышение температуры. В результате элементу понадобится замена.

Применение

Уникальные характеристики ионисторов находят применение в различных областях техники..

Суперконденсаторы используются в следующих вариантах техники:

  1. Общественный транспорт. В электробусах вместо аккумуляторов устанавливаются ионисторы. Они заряжаются во время высадки и посадки пассажиров. Подобный транспорт способен объезжать пробки и обрывы контактных линий.
  2. Электромобили. Одна из проблем такого транспорта является длительное время зарядки. Суперконденсатор позволяет производить зарядку на кратковременных остановках.
  3. Бытовая электроника. Устройства применяются в фотовспышках и другом оборудовании. Они обеспечивают быструю подзарядку.
  4. Неполярные конденсаторы применяются в ветровых турбинах и кислотных батареях.
  5. Ионисторы используются в системах демпфирования энергетических нагрузок, а также в оборудовании запуска электродвигателей.
  6. Суперконденсаторы необходимы в комплексах, в которых предусмотрены критические нагрузки. Для вышек мобильной связи, больничных учреждений и для портового оборудования.
  7. Приборы применяются для источников резервного электроснабжения ПК, а также в микропроцессорах и мобильных телефонах.

Для улучшения работы автомагнитолы можно приобрести и поставить ионистор. Он позволяет сгладить колебания напряжения во время включения зажигания. В некоторых странах применяются автобусы без тяговых батарей, а все работы производятся ионисторами.

В ходе проведенных испытаний было выявлено, что подобные устройства превосходят свинцово-кислотные батареи в ветровых турбинах. Суперконденсаторы востребованы в системах бесперебойного питания, в которых необходимо обеспечить быструю передачу мощности.

В мире насчитывается примерно 66 крупнейших производителей ионисторов.

Перспективы использования

Ионисторы с каждым годом становятся все совершенней. Важным параметром, которому ученые уделяют особое внимание — является увеличение удельной емкости. Через какое – то время планируется подобными приборами заменить аккумуляторы. Такие элементы позволяют заменить батареи в различных технических сферах. Специалисты возлагают большие надежды на разработку графеновых устройств. Применение инновационного материала поможет уже в ближайшее время создать изделия с высокими показателями запасаемой удельной энергии.

Ионистор нового образца в несколько раз превосходит альтернативные варианты. Данные элементы имеют в своей основе пористую структуру. Применяется графен, на котором распределяются частицы рутения. Преимуществом графеновой пены является способность удержания частиц оксидов переходных металлов. Подобные суперконденсаторы работают на водном электролите, что позволяет обеспечить безопасность эксплуатации.

В перспективе новинки будут применяться в сфере изготовления персонального электрического транспорта. Приборы на основе графеновой пены могут перезаряжаться до 8000 раз без ухудшения качественных характеристик.

В сфере автомобильного строения проводятся разработки альтернативных разновидностей топлива и устройств накопления энергии высокой эффективности. Подобные приборы могут применяться для грузового транспорта, электрических автомобилей и поездов.

В автомобилестроении суперконденсаторные батареи находят следующие применения:

  1. Пусковое устройство подсоединяется параллельно стартерным батареям. Применяется для повышения эксплуатационного срока и улучшения пусковых характеристик двигателя.
  2. Для стабильного питания акустических систем большой мощности в автомобиле.
  3. Буферные батареи подходят для применения в гибридном транспорте. Они характеризуются небольшой емкостью и значительной выходной мощностью.
  4. Тяговые батареи актуальны при использовании в качестве основного источника питания.

Суперконденсаторы обладают множеством преимуществ по сравнению с аккумуляторами в автомобильной промышленности. Они превосходно выдерживают перепады напряжения. Приборы характеризуются легкостью, поэтому можно устанавливать большое их количество.

Для сферы микроэлектроники разрабатываются новые технологии по производству компактных суперконденсаторов. При производстве электродов применяются специальные методы осаждения на тонкую подложку из диоксида кремния специальной углеродистой пленки.

Использование суперконденсаторов позволяет внедрить в жизнь экологические технологии экономии энергии. В перспективе предусмотрено расширение сфер применения таких приспособлений для отраслей автотранспорта, мобильной техники и средств связи.

Источник

Суперконденсаторы vs аккумуляторы: почему первые эффективнее

Преимущества суперконденсаторов перед привычными аккумуляторами. Neoline предлагает использовать источники нового типа питания для электроники.

Суперконденсаторы vs аккумуляторы: почему первые эффективнее

Компания Neoline, известный разработчик и производитель девайсов для автомобилистов, предлагает вместо типовых аккумуляторов использовать суперконденсаторы, утверждая, что это решит проблему сохранения энергии в устройствах. Об этом рассказывают на примере продукта из своего портфолио.

Что такое суперконденсатор? Это электрохимическое устройство с двойным электрическим слоем, которое называют золотой серединой между обычными аккумуляторами и электронными конденсаторами. Главное отличие суперконденсаторов от стандартных конденсаторов заключается в высокой емкости, которая стала возможной благодаря увеличению эффективной площади обкладок.

Суперконденсатор изобрели в середине XX века: в 1957 году патент на него получила компания General Electric. С тех пор технология постоянно совершенствовалась. Сегодня суперконденсаторы устанавливают в широком спектре устройств. Это резервный источник питания в микроволновках, телевизорах, компьютерах и даже видеорегистраторах. Так, Neoline снабдила суперконденсатором модель Wide S31.

Суперконденсаторы vs аккумуляторы: почему первые эффективнее

Суперконденсаторы поддерживают питание схем памяти в то время, когда основной источник питания отключен. Для чего их устанавливают в видеорегистраторах? Благодаря дополнительному источнику питания устройство вовремя завершает запись дорожной обстановки, если автомобиль заглохнет или кабель зарядки по какой-то причине отсоединится. В этой ситуации без суперконденсатора видеоролик сохранить не удастся.

Длительный срок службы

Суперконденсаторы практически не изнашиваются: даже тысячи циклов зарядки не способны уменьшить их первоначальный объем. В то же время емкость стандартных аккумуляторов со временем снижается. Так, новый смартфон без проблем держит заряд на протяжении суток интенсивного использования. Через пару лет пользователь замечает, что подзаряжать девайс приходится гораздо чаще.

Моментальная подзарядка

За счет внутреннего сопротивления суперконденсаторы полностью подзаряжаются за рекордное время – например, на подзарядку видеорегистратора Wide S31 требуется всего несколько минут. Вместе с тем разряжается он гораздо медленнее, чем устройства, работающие на типовых литий-ионных аккумуляторах.

Стабильность

Суперконденсаторы устойчивы к перепадам температур, что немаловажно для видеорегистраторов, владельцы которых нередко оставляют их в автомобилях жарким летом и морозной зимой. Девайсы с суперконденсаторами надежно защищены от внезапного перегрева. Так, Wide S31 не боится экстремально низких и высоких температур (от −20 до 70 градусов).

Очевидные плюсы позволяют устанавливать суперконденсаторы для питания крупногабаритного и общественного транспорта. Эту технологию начала использовать Hyundai Motor. Разработчики утверждают, что автобусы с суперконденсаторами на борту могут заряжаться на каждой третьей остановке, при этом полная подзарядка потребует совсем немного времени. По их мнению, автобусы с электроприводами могут заменить троллейбусы – для них не нужна контактная сеть.

Читайте также:  Аккумулятор ASUS ZenPower 10050C QC ABTU012

Разработчики суперконденсаторов уверены, что установка этих устройств в бытовых устройствах, электробусах и видеорегистраторах далеко не предел: технологии развиваются и совершенствуются, поэтому в будущем можно ожидать, что они полностью заменят типовые аккумуляторы.

Если вам интересны новости мира ИТ также сильно, как нам, подписывайтесь на наш Telegram-канал. Там все материалы появляются максимально оперативно. Или, может быть, вам удобнее «Вконтакте» или Twitter? Мы есть также в Facebook.

Источник

Суперконденсаторы вместо аккумуляторов

Суперконденсаторы вместо аккумуляторов

По своим основным характеристикам суперконденсаторы значительно отличаются от простых привычных конденсаторов. В них применены современные технологии, которые позволяют добиться увеличения срока службы, а также снизить токовые потери в процессе эксплуатации. Основной задачей производителей данных устройств является разработка, и создание изделий способных заменить аккумуляторы во многих отраслях.

  1. Применение двойного электрического слоя
  2. Техническая реализация
  3. Разновидности суперконденсаторов
  4. Двухслойные конденсаторы
  5. Гибридный суперконденсатор
  6. Псевдоконденсаторы
  7. Основные параметры
  8. Энергетическая плотность
  9. Преимущества и недостатки
  10. Особенности применения
  11. Перспективы развития

Применение двойного электрического слоя

Продолжительное время обладателями высоких значений внутренней емкости являлись конденсаторы электролитического вида. В различных устройствах изготавливались разнообразные обкладки, у одних они производились из металла, в других в виде электролита, где изоляцией являлся оксид используемого металла. Причем у обыкновенных конденсаторов внутренняя емкость имеет значение значительно ниже и равна долям фарада, чего на практике недостаточно для питания потребителей вместо аккумуляторных батарей.

Схема химических процессов

Для обеспечения питания для электропотребителей были разработаны устройства на основе применения двойного электрического поля. Данное явление может возникать на границах материала или вещества при определенных условиях в жидком или твердом состоянии. В результате образуются два слоя разнополярных ионов одинакового размера, получается своеобразный конденсатор с электродами, между которыми образуется минимальное расстояние равное нескольким атомам.

Интересно знать! Устройства, полученные таким способом, называют ионисторами, а также суперконденсатор или ультраконденсатор.

Техническая реализация

Ионистор или суперконденсатор представляет собой устройство в конструкции которого имеются два электрода или пластины, изготовленные из активированного угля. Пространство между ними заполнено специальным электролитом, также между обкладками располагается мембрана, благодаря которой не происходит перемещение частиц электродов, а электролит свободно проникает в данное пространство.

Причем стоит отметить, что самостоятельно данные устройства не имеют определения полярности заряда конкретных электродов. Это свойство является одним из главных отличий от конденсаторов электролитического вида, в которых несоблюдение правильного подключения приводило к преждевременному выходу из строя. Однако при производстве на ионисторах наносится маркировка с указанием полярности, в результате того, что в процессе производства данные накопители энергии уже выходят заряженные.

Разновидности суперконденсаторов

В настоящее время все ультраконденсаторы разделяют на три основных вида:

  1. Двухслойные.
  2. Гибридные.
  3. Псевдоконденсаторы.

Двухслойные конденсаторы

Данные устройства представляют собой изделие в конструкции которых применяются электроды с наличием пор, покрытых углеродом повышенной проводимости между ними находится специальный сепаратор. Благодаря разделению зарядов на электродах происходит образование значительного значения потенциала, в результате чего происходит накопление энергии.

Двухслойные конденсаторы

Интересно знать! На величину емкости оказывает непосредственное влияние значение двойного слоя.

Двойной слой в такой конструкции выполняет роль конденсатора поверхностного. Благодаря электролиту два слоя объединяются в последовательную цепочку.

Гибридный суперконденсатор

Данный вид накопителей электроэнергии считается промежуточным между аккумуляторами и конденсаторами. В конструкции таких устройств применяются электроды, изготовленные из различных материалов, в результате чего емкость заряд накапливается разными способами.

Гибридный суперконденсатор

Непосредственно сам процесс восстановления заряда происходит благодаря реакции окислительно-восстановительного вида. Такая конструкция позволяет значительно увеличить внутреннюю емкость и повысить рабочее напряжение. Электроды состоят из соединения сложных проводящих полимеров, которые в сочетании между собой представляют материал повышенных электрических характеристик.

Псевдоконденсаторы

Данные устройства представляют собой изделия несколько похожие по свои основным характеристикам на АКБ, они имеют два твердых электрода.

 Псевдоконденсатор

В результате чего стало возможным применять конденсатор вместо аккумулятора. Принцип действия состоит из двух основных механизмов:

  • рабочие циклы заряд-разряд;
  • электростатические реакции, которые наблюдаются в устройствах с двойным слоем.

Интересно знать! Емкость псевдоконденсаторов зависит от реакций переноса электролитических зарядов.

Основные параметры

К основным характеристикам суперконденсатора следует отнести:

  • время заряда, имеет малое значение и равно от 1 с до 10 с;
  • в сравнении с кислотными аккумуляторами имеют значительное число рабочих циклов, практически более 30000 часов;
  • номинальное рабочее напряжение имеет значение до 2,75 В;
  • срок службы до 15 лет;
  • диапазон рабочих температур от -45°С до +65°С;
  • удельная энергоемкость имеет значение до 5 Вт*ч/ кг.

Энергетическая плотность

Способность ионисторов накапливать энергию ниже, чем у кислотных аккумуляторных батарей. Значение энергии зависит от внутреннего сопротивления устройства, чем оно ниже, тем выше плотность энергии. Современные разработки позволяют применять такие материалы как азот и графен, благодаря которым удалось добиться значительного увеличения внутренней плотности энергии.

Преимущества и недостатки

Как и любое электронное устройство ионисторы в процессе эксплуатации имеют некоторые достоинства и недостатки. К преимуществам производители относят:

  • Имеют пониженную удельную стоимость, если сравнивать емкость конденсатора и аккумулятора.
  • Повышенные показатели внутренней емкости, в результате чего увеличивается количество рабочих циклов заряд-разряд.
  • Более надежные, а также имеют большой срок службы в отличие от кислотных и литиевых аккумуляторов.
  • Отличаются экологической чистотой, благодаря применяемым материалам.
  • Повышенные значения номинальной мощности.
  • Возможность эксплуатирования в широком температурном диапазоне. Низкие температуры не помеха при запуске оборудования любого вида.
  • Значительно увеличенный временной промежуток при восполнении заряда и при рабочем разряде.
  • В отличие от аккумуляторных батарей имеют возможность полного разряда практически до нулевого значения рабочего напряжения.

Интересно знать! Суперконденсаторы имеют сравнительно малые размеры относительно других подобных приборов.

Конденсаторы

Однако при наличии многих плюсов в процессе эксплуатации присутствуют и минусы. К недостаткам относят:

  • Малая плотность энергетических накоплений относительно аналогичных устройств.
  • Пониженное значение напряжение на единицу внутренней емкости одного элемента.
  • Увеличенное показание самостоятельного разряда.
  • Не окончательно проработанная технология производства ионисторов.

Особенности применения

Широкую популярность ионисторы приобрели благодаря стремлению человечества найти новые и более эффективные средства для того, чтобы накапливать и сохранять энергию длительное время. Основным достоинством, определившим его распространение, стала возможность суперконденсатора за короткий период времени импульсно выделять значительную энергию от 0,1 с до 10 с.

Ионисторы нашли применение в установках и технике, где необходим быстрый и качественный запуск электрооборудования в короткий промежуток времени даже при отрицательных температурах. При этом уменьшаются максимальные токовые нагрузки и приводит к экономии средств. Не исключено и применение для запуска двигателя внутреннего сгорания.

Суперконденсатор

При соединении конденсаторов в батарею возможно добиться максимальной емкости сопоставимой с аккумуляторной для питания электромобилей. Однако при этом вес источника питания будет значительно выше чем у обычных аккумуляторов. Разработчикам практически удалось решить проблему превышающего веса, для этого необходим графен однако такое возможно пока только в лабораторных условиях.

В настоящее время одним самых наиболее удачных применений ионисторов стало использование в общественном электротранспорте. В конструкции такой техники применяются устройства бесперебойного питания в которых присутствуют суперконденсаторы.

Аварийное освещение в которых установлены конденсаторы большой емкости вместо аккумуляторов имеют значительное преимущество перед системами с обычными аккумуляторами.

Интересно знать! Некоторые зарубежные производители встраивают резервные источники питания на основе ионисторов в светодиодные лампы.

Перспективы развития

Современные технологии и разработки позволяют предположить, что ионисторы в скором времени будут применяться практически во всех энергоемких производствах, космической промышленности, медицине и военной технике. Постепенно будет увеличиваться внутренняя емкость суперконденсаторов, в результате чего станет возможным заменить старые свинцово-кислотные батареи.

Также станет возможным внедрение в различные электронные устройства с регулированием и управлением. Причем станет доступным производство экологически чистых источников экономии энергии, которые значительно превышают аналоги по характеристикам. А также суперконденсаторы находят широкое применение в автомобильном транспорте, мобильных и электронных устройствах.

Полное вытеснение обычных аккумуляторов пока не происходит так как суперконденсаторы используются только в определенных областях. Однако наука не стоит на месте и постоянно развивается, в результате чего в скором времени мы сможем увидеть данные устройства в автомобильной технике, мобильных и электронных устройствах.

Источник

Как устроен суперконденсатор

Суперконденсатор, также известный как ультраконденсатор или двухслойный конденсатор, отличается от обычного конденсатора тем, что имеет очень большую емкость. Конденсатор хранит энергию с помощью статического заряда, в противовес электрохимическим реакциям батареи. Применение дифференциального напряжения на положительную и отрицательную пластины заряжает конденсатор. Это похоже на накопление статического заряда при трении. Прикосновение же к пластине конденсатора высвободит энергию.

Существует три типа конденсаторов, основным среди них является электростатический конденсатор с сухим сепаратором. Эта классическая модель конденсатора имеет очень маленькую емкость и в основном используется в радиоэлектронике. Емкость конденсатора измеряется в фарадах и для электростатического колеблется в диапазоне пикофарад (пФ).

Следующий тип конденсатора — электролитический, он обеспечивает более высокую емкость в сравнении электростатическим и оценивается в микрофарадах (мкФ), что в миллион раз больше пикофарада. Сепаратор в таких конденсаторах влажного типа. Как и в электрических батареях, конденсаторы имеют разные полюса, которые необходимо соблюдать при использовании.

Standard Range AGM Deep Cycle Range AGM Gellyte Range GEL
свинцово-кислотные аккумуляторы аккумуляторы для газового котла гелевые аккумуляторы 12 вольт 100 ач и 200 ач
10 — 12 лет / 600 циклов 10 — 12 лет / 700 циклов 10 — 12 лет / 750 циклов
универсальная серия AGM для глубоких разрядов AGM универсальная серия GEL
Читайте также:  SVEN PS 650 АККУМУЛЯТОР АКБ БАТАРЕЯ

Третий тип – это суперконденсатор, его емкость оценивается в фарадах и в тысячи раз больше емкости электролитического. Суперконденсатор используется для хранения энергии, подвергающейся частым циклам заряда/разряда при высоких значениях силы тока и короткой длительности.

Единица измерения емкости фарад, названа так в честь английского физика Майкла Фарадея (1791-1867). Один фарад хранит один кулон электрического заряда при напряжении один вольт. Один микрофарад в миллион раз меньше фарада, а пикофарад в миллион раз меньше микрофарада.

Инженеры General Electric начали экспериментировать с ранней версией суперконденсатора еще в 1957 году, но коммерческого интереса эти разработки не вызвали. В 1966 году Standart Oil заново случайно обнаружили эффект двухслойного конденсатора во время работы с экспериментальными конструкциями топливных элементов. Двухслойная структура значительно улучшала способность накапливать энергию. Технология снова не была коммерциализирована и лишь 1990-х нашла свое применение.

Развитие суперконденсаторов тесно переплетено с технологиями электрохимических источников тока, именно оттуда были позаимствованы специальные электроды и электролит. В то время как основной электрохимический двухслойный конденсатор (EDLC) зависит от электростатического действия, асимметричный двухслойный электрохимический конденсатор (AEDLC) использует батарееподобные электроды для получения более высокой плотности энергии, но это ограничивает его жизненный цикл и наделяет ограничениями, схожими на ограничения электрохимического источника тока. Многообещающим выглядит использование графена в качестве материала электрода, но исследования в этом направлении пока только ведутся.

Было испробовано много типов электродов, и наиболее распространенной системой электрохимического двухслойного суперконденсатора сегодня является версия на основе углерода с органическим электролитом. Неоспоримым преимуществом такого суперконденсатора является простота изготовления.

Все конденсаторы имеют предел напряжения. В то время как электростатический конденсатор является высоковольтным, суперконденсатор ограничен напряжением в 2,5-2,7 В. Повышение значения напряжения выше этого уровня возможно, но негативно сказывается на продолжительности срока службы. Поэтому для получения более высокого напряжения используют последовательное соединение нескольких суперконденсаторов. В свою очередь, последовательное соединение уменьшает общую емкость и увеличивает внутреннее сопротивление. Такое соединение более чем трех конденсаторов требует дополнительной балансировки для избежания перенапряжения отдельной ячейки. Похожим образом реализована система защиты литий-ионного аккумулятора.

Удельная энергоемкость суперконденсатора колеблется от 1 до 30 Вт*ч/кг, что в 10-50 раз меньше показателя литий-ионного аккумулятора. Еще одним недостатком является кривая разряда. В то время как электрохимические батареи обеспечивают постоянное напряжение в полезном диапазоне мощности, напряжение суперконденсаторов уменьшается линейно, что сокращает спектр доступной мощности. (Смотрите: Базовые знания о разряде электрохимического источника тока).

Marin GEL Range Deep Cycle GEL Range Solar GEL Range
аккумулятор для электромотора аккумуляторы глубокого разряда аккумуляторы для солнечных батарей
10 — 12 лет / 800 циклов 10 — 12 лет / 800 циклов 10 — 12 лет / 800 циклов
для электромоторов лодок и катеров для глубоких циклических разрядов для солнечных электростанций

Возьмите источник тока с номинальным напряжением 6 В и напряжением отсечки 4,5 В. Если этот источник тока – суперконденсатор, то из-за своего линейного характера разряда он достигнет точки отсечки еще в первой четверти цикла, остальные три четверти энергетического резерва будут недоступными для использования. Можно конечно дополнительно использовать преобразователь напряжения — он позволит пользоваться источником питания и с низким значением напряжения, но это добавляет дополнительные расходы и приводит к потерям энергии. Электрическая же батарея имеет график разряда в виде относительно прямой линии, что позволяет использовать от 90 до 95 % накопленной в ней энергии.

На рисунках 1 и 2 показаны характеристики тока и напряжения при заряде и разряде суперконденсатора. При зарядке напряжение увеличивается линейно, а ток проседает, когда конденсатор полностью зарядился, вследствие этого даже отпадает необходимость использования системы детектирования полного заряда. При разрядке напряжение уменьшается также линейно. Для поддержания постоянного уровня потребляемой мощности при падении напряжения, преобразователь напряжения будет потреблять все большую силу тока. Разряд будет достигнут, когда нагрузочные требования больше не могут быть удовлетворены.

Зарядные характеристики суперконденсатора

Рисунок 1: Зарядные характеристики суперконденсатора. Напряжение линейно растет при постоянном уровне тока заряда. При полном заполнении конденсатора зарядный ток падает.

Разрядные характеристики суперконденсатора

Рисунок 2: Разрядные характеристики суперконденсатора. При разряде напряжение снижается линейно. Опциональный преобразователь напряжения может поддерживать определенный показатель напряжения, но это увеличивает показатель силы тока разряда.

Время зарядки суперконденсатора составляет от 1 до 10 секунд. Зарядные характеристики аналогичны характеристикам электрохимических батарей, и в значительной степени ограничены допустимой силой тока зарядного устройства. Суперконденсатор невозможно зарядить сверх его емкости, вследствие этого ему не нужна система детектирования полного заряда — ток просто перестает течь в него.

В таблице 3 сравниваются суперконденсатор и стандартный литий-ионный аккумулятор.

Характеристики Суперконденсатор Стандартный литий-ионный аккумулятор
Время зарядки 1-10 секунд 10-60 минут
Количество циклов 1 миллион или 30 тысяч часов 500 и выше
Напряжение ячейки От 2,3 до 2,75 В 3,6 В номинал
Удельная энергоемкость (Вт*ч/кг) 5 (стандартно) 120-240
Удельная мощность (Вт/кг) до 10 тысяч 1000-3000
Стоимость килограмм ватта $ 10000 (стандартно) $ 250-1000 (большие системы)
Время жизни 10-15 лет от 5 до 10 лет
Допустимый зарядный диапазон температур от -40°С до 65°С от 0°С до 45°С
Допустимый разрядный диапазон температур от -40°С до 65°С от -20°С до 60°С

Таблица 3: Сравнение производительности суперконденсатора и литий-ионного аккумулятора.

Суперконденсатор может заряжаться и разряжаться практически неограниченное число раз. В отличии от электрохимической батареи, в которую заложен жизненный цикл определенного размера, суперконденсатор практически нечувствителен к воздействию циклического режима работы. Также слабее на него действуют и возрастные изменения, связанные с деградацией материалов. При нормальных условиях емкость суперконденсатора после 10 лет эксплуатации сохраняется на уровне 80% от номинальной. Но работа с высокими напряжениями может снизить его срок жизни. Также стоит отметить преимущество суперконденсатора по температурным показателях — слабым местом всех электрохимических источников тока.

OPzS NI-CD OPzV
аккумуляторы opzs промышленные аккумуляторы ni-cd аккумуляторы opzv
20 лет / 1500 циклов 25 лет / 2000 циклов 20 лет / 1500 циклов
для промышленного и частного применения: телекоммуникации, аварийное освещение, солнечные электростанции, системы безопасности, (UPS) источники бесперебойного питания и т.д.

Саморазряд суперконденсатора значительно выше у обычных конденсаторов и немного превышает показатель электрохимической батареи. Причиной такого высокого саморазряда, главным образом, выступают свойства органического электролита. Для сравнения, суперконденсатор теряет половину запасенной энергии за 30-40 дней, а свинцовые и литиевые аккумуляторы саморазряжаются всего на 5% в месяц.

Применение суперконденсаторов

Суперконденсаторы являются идеальным выбором в случаях, где возникает краткосрочная потребность в питании и есть возможность быстрой зарядки. В противовес этому, электрохимические батареи оптимизированы для обеспечения относительно долгосрочного электропитания. Объединение этих двух систем в гибридный источник питания позволяет использовать сильные стороны каждой. Такие гибриды уже существуют, например, в виде союза суперконденсатора и свинцово-кислотной электрохимической системы.

Суперконденсаторы находят свое применение в системах, где необходимо обеспечение питания продолжительностью от нескольких секунд до нескольких минут, и также могут быть быстро заряжены. Подобными качествами располагает и маховик (инерционный аккумулятор), поэтому суперконденсатор может выступать ему альтернативой в определенных процессах, например, транспортной сфере.

Сегодня продолжаются испытания системы суперконденсаторов мощностью 2 мВт и системы маховиков мощностью 2,5 мВт для обеспечения движения Нью-Йоркской железной дороги (Long Island Rail Road — LIRR). Целью этих испытаний является поиск решения проблемы проседания напряжения при разгоне. Обе системы должны обеспечивать бесперебойную подачу электроэнергии определенной мощности в течение 30 секунд, а также заряжаться за такой же период времени. Главными требованиями являются колебание напряжения в диапазоне не более 10 %, низкие эксплуатационные расходы и долговечность не менее 20 лет. (Пока что больший интерес вызывали маховики, так как считается, что они более прочные и экономичные, но испытания еще продолжаются).

Япония также активно исследует и развивает использование суперконденсаторов. Уже существуют 4 мВт системы, установленные в зданиях, предназначение которых заключается в уменьшении нагрузки на электросети в часы пик. Также существуют системы, обеспечивающие кратковременное электропитание в моменты между отключением электричества и запуском резервных генераторов.

Flooded 6V Flooded 8V Flooded 12V
аккумуляторы для погрузчиков аккумуляторы для подъемников тяговые аккумуляторы 12 вольт
10 — 12 лет / 600 циклов 10 — 12 лет / 600 циклов 10 — 12 лет / 600 циклов
для тяжелых условий работы с электромотрами в составе лодок, погрузчиков, подъемников, поломоечных машин и т.д.

Технологии суперконденсаторов также смогли проникнуть в область электротранспорта. Возможность зарядки за счет сил торможения и способность обеспечения высоких показателей силы тока для ускорения делают суперконденсаторы крайне интересными для гибридных и электрических транспортных средств. Широкий диапазон рабочих температур и долговечность дают преимущество над электрохимическими батареями в этой сфере.

Но недостатки суперконденсаторов, такие как низкая удельная энергоемкость и высокая стоимость, побуждают некоторых разработчиков делать выбор в пользу более емкого аккумулятора за ту же стоимость. В таблице 4 приведены преимущества и недостатки суперконденсаторов.

Преимущества Практически неограниченный жизненный цикл; может быть перезаряжен миллионы раз
Высокая удельная мощность и низкое внутреннее сопротивление обеспечивают высокие токи нагрузки
Процесс зарядки занимает секунды; сам прекращает процесс зарядки
Простой процесс и условия зарядки
Безопасный, устойчивый к неправильной эксплуатации
Отличные показатели работы при низких температурах
Недостатки Низкая удельная энергоемкость
Линейный характер снижения напряжения не позволяет использовать всю накопленную энергию
Высокий саморазряд, выше, чем у электрических батарей
Низкое напряжение ячейки, необходимость последовательного соединения и балансировки систем из нескольких ячеек
Высокая стоимость ватта энергии

Таблица 4: Преимущества и недостатки суперконденсаторов.

Источник