Меню

Оригинальные vs китайские устройства

3 шага, чтобы ускорить зарядку мобильного телефона, когда это не обходимо

Кто не хочет, чтобы его смартфон заряжался вместо нескольких часов за пару минут? Ускоренная зарядка телефона избавляет от утомительного ожидания. 10-30 минут, и батарея заполняется наполовину.

Что такое ускоренная зарядка

Работы над ускорением зарядки ведутся с тех пор, как появились высокотехнологичные смартфоны. Многие вспоминают время, когда старенький кнопочный Nokia держал заряд неделю. При этом они упускают из виду, что современные телефоны имеют большую производительность (в разы). Добавить к этому выросшее качество изображения, вместительность памяти, огромный сенсорный экран. Вполне закономерно, что, чем «круче» смартфон, тем больше он «кушает».

Подзарядка для смартфона

Чтобы поддерживать автономность современных телефонов, производители увеличили емкость аккумуляторов. Соответственно, заряжаться они стали дольше. Для тех, кто не знает, как заряжается батарея, есть простое объяснение:

Когда телефон подключается через зарядное устройство к сети, в аккумулятор поступает энергия. Чтобы батарея не перегрелась, мощность ограничивается специальным контроллером внутри телефона. Обычно он пропускает не больше 5 Вт.

Медленная зарядка безопаснее. Производители телефонов подстраховались, чтобы не произошло перезарядки малоемкостных батарей. Но современные устройства способны справиться с большей мощностью.

Принцип ускоренной зарядки заключается в увеличении мощности тока, подаваемого на аккумулятор. Специальные устройства могут давать 10 Вт и даже много больше. А вот способен ли телефон их принять, зависит уже от его характеристик.

Новые технологии

Казалось бы, нужно просто увеличить мощность для ускорения процесса зарядки. Но это неправильно. Вместе с этим вырастет нагрев батареи. Именно поэтому были разработаны стандарты быстрой зарядки. Суть состоит в регулировке напряжения и силы тока. Для этого применяются разные алгоритмы. Кроме того, быстрое зарядное устройство и телефон сообщаются. Становится понятно, сколько заряда требуется, и вообще, потянет ли смартфон большую мощность.

Подзарядка смартфоны

На 2021 год многие производители гаджетов обзавелись своим стандартом.

Сетевая зарядка Aukey

  • Quick Charge. Принадлежит компании Qualcomm, которая является первооткрывателем быстрой зарядки. Заявленная входная мощность доходит до 24 Вт и выше. Но на деле смартфоны с QC 2.0 и 3.0 чаще получают до 18 Вт. С технологией «дружат» гаджеты со специальными процессорами Qualcomm, а для QC 3.0 нужен Snapdragon. Сами зарядки бывают класса А и В. Первые встречаются намного чаще. С обычным кабелем micro-USB они дают 24 Вт, а с USB Type-C – 36 Вт.
  • Технология от компании Lenovo (Motorola). В ее основе лежит Quick Charge 2.0, поэтому и совместимость между ними хорошая. Но в отличие от QC 2.0 с 18 Вт, TurboPower 30 дает 28,5 Вт.
  • Pump Express. Соперничает Quick Charge. Разработка принадлежит MediaTek. Данный вариант примечателен тем, что аккумулятор может быстро заряжаться напрямую, минуя контроллер (у версии PE 3.0). Для поддержки необходимы только порт и провод USB Type-C. Список совместимых девайсов очень обширный.
  • Adaptive Fast Charging. Наиболее популярная технология от Samsung. Ее поддерживают все телефоны линейки Note и S-серии, начиная с Galaxy Note 4 и Galaxy S6. Максимальная мощность, правда, небольшая – 15 Вт при напряжении в 9 В. Этого хватает, чтобы зарядить аккумулятор, емкостью 3000 мАч за полчаса на 50%.
  • VOOC Flash Charging и Dash Charge. Принадлежат одной компании ВВК. VOOC Flash Charging представлена под брендом Oppo. При напряжении 5 В мощность составляет 25 Вт. Аккумулятор 3000 мАч за 30 минут восполняет 75% заряда. Dash Charge применяется в смартфоне OnePlus 3. Быстрая зарядка работает только с «родным» кабелем. Мощность – 20 Вт при напряжении 5 В. Телефон заряжается за полчаса до 63%.
  • Super mCharge. Многообещающая технология от Meizu. При 11 Вт устройства дают мощность 55 Вт. Это позволяет заряжать аккумулятор 3000 мАч за 20 минут полностью! Телефон должен поддерживать стандарт. Также понадобится специальное зарядное устройство и кабель.
  • USB Power Delivery. Технология, продвигаемая Google. В будущем планируется внедрить ее на всех устройствах Андроид. Шаг навстречу уже сделала компания Qualcomm: USB PD совместим с QC0. Также технологию использует Apple (Айфон 8, XS, XR, X, Айпад Про, Макбук 12). Быстрая зарядка от Apple требует наличия стороннего провода Lightning-USB-C с поддержкой USB-PD. При напряжении 14,5 Вт мощность составляет 29 Вт.

Телефон на зарядке

Как ускорить зарядку телефона

Ускорить зарядку смартфона или планшета очень просто. Для этого необходимо специальное зарядное устройство. Алгоритм действий следующий:

  1. Зайти на сайт производителя гаджета и выяснить, какую технологию быстрой зарядки поддерживает ваша модель телефона или планшета.
  2. Выбрать зарядное устройство, поддерживающее ту же технологию. Обратить внимание, какой к нему нужен провод.
  3. Включить зарядное устройство в сеть, и подключить телефон. Полчаса, и гаджет наполовину зарядится.

Зарядка для смартфона

Быстрое устройство работает «быстро» только до восполнения 50-75% заряда батареи. Затем мощность постепенно снижается. В конце, от 90% до 100% телефон заряжается медленно. То есть, от наполненности аккумулятора напрямую зависит скорость зарядки.

Оригинальные vs китайские устройства

Средняя стоимость сертифицированных быстрых зарядных устройств составляет 1000 рублей. Желая сэкономить, многие устремляют свой взор на китайские подделки. Например, на сайте Алиэкспресс можно заказать быструю зарядку за 200-300 рублей. Обзор одного такого устройства можно посмотреть на видео:


Да, китайские быстрые зарядки справляются со своей задачей. Однако они не безопасны. Сделанные из некачественных материалов, блоки питания перегреваются. В лучшем случае они быстро выходят из строя, в худшем – приводят к перегреву и поломке телефона.

Вопросы и ответы

Вопрос: Что будет, если подключить к телефону несовместимую быструю зарядку?

Ответ: Ничего. Заряд будет осуществляться в базовом «медленном» режиме. В нем напряжение ограничено 5 В, а входной ток 2-3 А.

Вопрос: Как отразится быстрая зарядка на долговечности батареи?

Ответ: Нет. Постепенно емкость всех аккумуляторов сама по себе снижается. На этот процесс влияет температура и скорость заряда. При использовании сертифицированных устройств нагрева батареи не происходит. Что касается скорости заряда, то ее можно увеличить без каких-либо последствий, если ток будет не выше 1С. Большая часть зарядок вписывается в эти рамки. В технологиях, где ток составляет 2С, емкость батареи снижается до 20% за 800 циклов. Что и без того входит в гарантийный срок.

Появление высокотехнологичных гаджетов, с одной стороны, достижение. А с другой, пользователям приходится искать способы сделать их автономными. Аккумуляторы с большой емкостью можно заряжать реже, но занимает это больше времени. Решить проблему можно только быстрыми зарядками. Отключение блютза, gps, ненужных программ, уменьшение яркости (то, что делают приложения «быстрая зарядка») – капля в море, которая ничего не решит. Естественно, во время зарядки телефона не нужно им пользоваться.

Источник



Модернизация маломощного зарядного устройства

Известно два основных варианта зарядных устройств (ЗУ), используемых для обслуживания маломощных электронных устройств с аккумуляторным питанием. Принципиальная схема первого из них представлена на Рис.1. Такими устройствами комплектовались наши приборы несколько лет назад, когда аккумуляторы, по сравнению с современными, имели существенно меньшую емкость, и ток заряда для типоразмера АА не превышал 70 – 130 мА.

Рисунок 1

Основной особенностью этого устройства является работа в режиме частотной модуляции, который реализуется следующим образом. В течение цикла заряда индуктивности трансформатора напряжение базовой обмотки приложено плюсом через R3, C2 к базе ключевого транзистора, при этом C2 заряжается примерно до напряжения базовой обмотки. Когда ключ размыкается, напряжение на базовой обмотке меняется на обратное и, суммируясь с имеющемся на конденсаторе C2, запирает ключевой транзистор. С этого момента конденсатор C2 начинает перезаряжаться током, протекающим через токозадающие резисторы R1, R2 вплоть до открывания ключевого транзистора. Изменяя этот ток, что обеспечивается за счет соответствующего включения выходной секции оптрона DA1, можно в широких пределах регулировать частоту выходного напряжения при постоянной длительности зарядного цикла и, тем самым, изменять величину выходного тока ЗУ. Основным достоинством модуляции такого типа является практически бесконечный диапазон регулировки выходного тока без какого-либо влияния на режим насыщения ключевого транзистора.

К достоинствам устройства следует отнести достаточно высокую стабильность параметров при простой схеме, а также реализованную простыми средствами индикацию выходного тока, что отличает его от большинства ЗУ серийного производства.

Основным же недостатком является возможность насыщения трансформатора, что связано с неопределенностью максимального тока через ключевой транзистор и требует либо применения трансформаторов с запасом по мощности, либо подстройки параметров элементов R3, C2 для каждого конкретного образца ЗУ под имеющийся трансформатор.

При этом следует отметить, что режим работы устройств, выполненных по такой схеме, зачастую устойчив только при гарантированном отсутствии насыщения трансформатора. В ином случае устройство может стать неуправляемым, поскольку из-за резкого возрастания амплитуды колебаний, возникающих на всех обмотках после разряда индуктивности насыщенного трансформатора, может возникнуть режим неуправляемых автоколебаний, который только в некоторых случаях удается устранить включением дополнительного конденсатора параллельно базо-эмиттерному переходу ключевого транзистора. В данном случае это конденсатор C5.

Недостатком является также тот факт, что выходная мощность устройства принципиально ограничена как из-за неопределенности режима ключевого транзистора, так и из-за недопустимого роста потерь в выходной секции ЗУ при увеличении зарядного тока.

Принципиальная схема ЗУ другого типа представлена на Рис.2. Следует отметить, что вариаций на тему этой схемы несколько, в том числе со стабилизацией и ограничением напряжения по первичной стороне, однако будем рассматривать только наиболее универсальный вариант с прямой стабилизацией по выходному току.

Основной особенностью этой схемы является использование элементов (VT1, R4, R6), которые контролируют величину максимального тока через ключевой транзистор и, соответственно, через первичную обмотку трансформатора. Такая особенность делает это устройство предпочтительным для серийного производства, т.к. при этом любая подстройка схемы оказывается ненужной, а максимальный ток через ключ однозначно определяется параметрами элементов схемы.

Однако, при введении этих элементов, конденсатор С3, в отличие от предыдущей схемы, не может создавать дополнительное запирающее напряжение на базе VT2 при разряде индуктивности, поскольку базо-эмиттерный переход этого транзистора при отрицательной полярности напряжения на базе зашунтирован прямосмещенным коллекторно-базовым переходом транзистора VT1, а кроме этого, верхний по схеме вывод базовой обмотки через диод VD6 замкнут на отрицательную шину первичного источника. Из-за этого ключевой транзистор включается сразу же по окончании цикла разряда индуктивности без дополнительной задержки, обусловленной перезарядом конденсатора C3. Поэтому устройства такого типа всегда работают в режиме неуправляемых автоколебаний и резистор R3 необходим только для начального запуска. Реализуемый в таком случае тип модуляции можно считать модуляцией смешанного типа, при которой изменяется и частота, и длительность зарядного цикла. При этом частота преобразования может быть в несколько раз более высокой, нежели у первого рассмотренного ЗУ, что создает значительно больше помех для окружающих электронных устройств.

Поскольку данное устройство работает в режиме неуправляемых автоколебаний, единственным доступным способом регулировки выходного тока является изменение максимального тока через индуктивность. Такую регулировку предположительно можно обеспечить двумя способами – за счет изменения сопротивления резистора R6 или за счет управляющего тока, создающего падение напряжения на резисторе R4, которое суммируется с падением на R6. При этом частота преобразования по мере уменьшения выходного тока должна была бы увеличиваться, поскольку индуктивность заряжается до меньшего максимального тока за меньший интервал времени.

Однако реально частота преобразования в такой схеме в значительной степени определяется параметрами насыщения ключевого транзистора, поскольку время выхода биполярного ключа из насыщения – величина фиксированная, в некоторой степени зависящая от тока через C3, R5. Поэтому попытки уменьшить выходной ток упомянутыми способами дают незначительный эффект, а при дальнейших усилиях ключевой режим нарушается и конвертер превращается в линейный усилитель класса А. Это объясняется тем, что даже при существенном увеличении номинала резистора R6 насыщающий ток базы, создаваемый базовой обмоткой через С3, R5, почти не меняется, и время пребывания VT2 в насыщенном режиме меняется весьма слабо. Если же для уменьшения максимального тока через индуктивность искусственно увеличивать падение напряжения на R4, то при некотором его значении величина насыщающего тока становится недостаточной из-за замыкания его через открытый транзистор VT1, и ключевой транзистор переходит в режим линейного усиления. Поэтому в большинстве ЗУ такого типа, в которых отсутствует обратная связь по выходному току, существенно изменить величину выходного тока почти невозможно.

Если же устройство содержит обратную связь по выходному току, как это показано на Рис.2, то по аналогии должен получаться такой же эффект, как при искусственном увеличении напряжения на резисторе R4. Однако здесь следует иметь в виду, что обратную связь в импульсных устройствах трудно сделать абсолютно линейной, а поэтому в реальных устройствах она в той или иной степени имеет импульсный характер. С учетом этого, за счет ООС регулируется не только величина выходного тока, но и временные параметры преобразования. Т.е. изменяется характер модуляции. Например, в некоторых испытанных устройствах подобного типа за счет ООС характер модуляции становится подобен частотной, в некоторых – прерывистой, что в принципе позволяет принудительно обеспечить достаточно широкий диапазон регулировки выходного тока.

Однако цепи стабилизации в этом устройстве содержат слишком много элементов. При этом за счет транзисторов VT1, VT3 обеспечивается настолько высокая электрическая стабильности выходного тока (лучше 0.2%), что она превышает более чем на порядок температурную стабильность этого параметра. Это делает некоторые элементы цепи стабилизации совершенно бессмысленными, поскольку обнаружить их влияние на фоне нестабильности при изменении температуры практически невозможно. Поэтому в некоторых серийных ЗУ такого типа цепи стабилизации по выходному току вообще не используются, а для ограничения выходного напряжения используется выпрямитель напряжения базовой обмотки, который через стабилитрон подключен к базе токоограничивающего или ключевого транзистора. Однако при этом стабильность ЗУ как источника тока в широком диапазоне входных напряжений оказывается недостаточной.

Кроме этого, поскольку зарядное устройство выполняет функцию источника тока, встроенная индикация должна соответствовать этой функции. Т.е. светодиод должен светиться только тогда, когда есть выходной ток. Однако, поскольку при больших выходных токах это сделать не очень просто из-за слишком большой рассеиваемой мощности на элементах схемы индикации, в подавляющем большинстве серийно выпускаемых устройств индицируется не ток, а выходное напряжение. Недостаток такой индикации очевиден – например, нормальный заряд индицируется, даже если Вы забыли соединить зарядное устройство с нагрузкой или в заряжаемом устройстве отсутствует аккумуляторная батарея.

Поскольку характеристики обоих рассмотренных выше устройств не оптимальны, возник вопрос, нельзя ли объединить их достоинства и исключить недостатки. Разумеется без заметного увеличения результирующей цены. То, что получилось в результате решения этой задачи, представлено на Рис.3.

Рисунок 3

Рассмотрим принципиальные изменения, которые касаются первичной высоковольтной секции модернизированного ЗУ.

Во-первых, токозадающий резистор R2+R3 подключен не к положительной шине питания, а к выходу схемы подавления выброса напряжения на индуктивности рассеяния (VD4, C2). Это не только позволило исключить из схемы один резистор большого габарита, но и помогло уменьшить амплитуду колебательного процесса на разомкнутой индуктивности, что положительно отразилось на устойчивости генерируемых колебаний при изменении первичного напряжения.

Во-вторых, чтобы избежать шунтирования базо-эмиттерного перехода ключевого транзистора в обратном направлении коллекторно-базовым переходом токоограничивающего транзистора, этот транзистор заменен на два прямосмещенных диода VD2, VD3. Заменить эти диоды низковольтным обратносмещенным стабилитроном, как это делается в некоторых ЗУ китайского производства, нельзя, поскольку при запертом состоянии VT1 стабилитрон превращается в прямосмещенный диод и это делает устройство эквивалентным изображенному на Рис. 2. При этом совокупность элементов VD2, VD3 и R5 оптимизированного ЗУ ограничивает максимальный ток через ключ VT1 практически так же, как элементы VT1, R4, R6 в устройстве, представленном на Рис. 2. И, в то же время, осуществляется режим управляемого перезаряда конденсатора C3 так же, как в устройстве, представленном на Рис.1. Следовательно, в ЗУ на Рис.3 реализована частотная модуляция, устраняющая любые проблемы с величиной выходного тока. Т.е. такое устройство с одинаковым успехом можно использовать как для зарядки аккумуляторов старого образца с зарядным током 70 мА и меньше, так и для зарядки современных, без ухудшения параметров ключевого режима коммутации при регулировке. В то же время, исключается возможность насыщения трансформатора, поскольку максимальное значение тока через ключ однозначно определяется по формуле:

Теперь рассмотрим изменения, касающиеся выходной секции ЗУ. Цепи стабилизации выполнены точно так же, как это сделано в первом рассмотренном устройстве, поскольку они достаточно эффективны. При этом выходной ток определяется сопротивлением резистора R8, и его нестабильность при изменении напряжения в сети вдвое не превышает 5%. Поэтому изменения касаются только схемы индикации выходного тока.

Здесь следует напомнить, что зарядное устройство представляет собой источник тока, выходное напряжение которого может изменяться от нуля (режим короткого замыкания на выходе) до некоторого максимального напряжения, величина которого определяется предельно допустимым напряжением питания обслуживаемого устройства, из которого извлекли аккумуляторную батарею (режим холостого хода). При этом, чтобы обеспечить индикацию зарядного тока с помощью стандартного светодиода, в выходной секции ЗУ необходим внутренний источник напряжения для его питания, причем такой, который обеспечивал бы свечение диода и при закороченном выходе ЗУ.

Однако в таком состоянии ни на одном элементе в выходной секции не имеется достаточного напряжения (

1.8 В) для обеспечения светодиодной индикации. Поэтому в большинстве серийных ЗУ это проблема решена просто – индицируется не ток, а выходное напряжение.

Для индикации наличия зарядного тока источник питания светодиода можно реализовать так, как это сделано на Рис.1, т.е. включить в цепь заряда резистор необходимого номинала, параллельно которому включить светодиод. Однако, поскольку падение напряжения на стандартном светящемся светодиоде не может быть менее примерно 1.8 В, то при зарядном токе, например 300 мА (именно на такой ток рассчитано устройство, представленное на рис. 3), рассеиваемая на этом резисторе источнике мощность составит примерно 0.6 Вт. Следовательно, для реализации такого источника необходим резистор мощностью 1 Вт, габариты которого слишком велики по отношению к объему остальных элементов зарядного устройства. Кроме того, вся эта мощность рассеивается в корпусе ЗУ, что будет способствовать повышению его рабочей температуры. Поэтому сопротивление этого резистора следует по возможности уменьшать, и те решения, которые использованы в первом рассмотренном устройстве, использовать нельзя.

Решить эту проблему можно, если к падению напряжения на резисторе R8 добавить без существенного увеличения рассеиваемой мощности примерно 0.6 В. Такое добавочное напряжение формируется с помощью R7, VD7. Следует отметить, что это напряжение импульсное, поэтому рассеиваемая на указанных элементах мощность пренебрежимо мала.

Отмечу, что представленная на Рис. 3 схема не является универсальной и пригодна лишь для реализации устройств с выходной мощностью не более единиц Ватт. Это объясняется тем, что для увеличения выходной мощности следует увеличивать емкость C3, которая совместно с R4 определяет степень насыщения транзисторного ключа и время его пребывания в таком состоянии. Но, в тоже время, следует увеличивать частоту преобразования. А для этого необходимо по возможности уменьшать емкость С3, поскольку существенно уменьшить сопротивление токозадающего резистора R2+R3 невозможно из-за роста выделяющейся на нем мощности. Эти противоречивые требования ограничивают выходную мощность устройства на указанном уровне.

Читайте также:  Особенности зарядного устройства

Источник

Доработка зарядного устройства сотового телефона

Автор предлагает варианты переделки зарядного устройства для сотового телефона в стабилизированный блок питания с регулируемым выходным напряжением или в источник стабильного тока, например, для зарядки аккумуляторов.

Одни из самых многочисленных электронных приборов, которые широко используются в быту, — несомненно, зарядные устройства (ЗУ) для сотовых телефонов. Некоторые из них можно доработать, улучшив параметры или расширив функциональные возможности. Например, превратить ЗУ в стабилизированный блок питания (БП) с регулируемым выходным напряжением или ЗУ со стабильным выходным током.

Это позволит питать от сети различную радиоаппаратуру или заряжать Li-Ion, Ni-Cd, Ni-MH аккумуляторы и батареи.

Значительная часть ЗУ для сотовых телефонов собрана на основе однотранзисторного ав-тогенераторного преобразователя напряжения. Один из вариантов схемы такого ЗУ на примере модели ACH-4E приведён на рис. 1. Там же показано, как превратить его в БП с регулируемым выходным напряжением. Обозначения штатных элементов приведены в соответствии с маркировкой на печатной плате.

Рис. 1. Один из вариантов схемы ЗУ на примере модели ACH-4E

Вновь введённые элементы и доработки выделены цветом.

В простых ЗУ, к которым относится дорабатываемое, зачастую применён однополупериодный выпрямитель сетевого напряжения, хотя на плате, в большинстве случаев, есть место для размещения диодного моста. Поэтому на первом этапе доработки установлены недостающие диоды, а резистор R1 с платы удалён (он установлен на месте диода D4) и припаян непосредственно к одному из штырей вилки XP1. Следует отметить, что встречаются ЗУ, в которых отсутствует и сглаживающий конденсатор С1. Если это так, необходимо установить конденсатор ёмкостью 2,2. 4,7 мкФ на номинальное напряжение не менее 400 В. Затем конденсатор С5 заменяют другим с большей ёмкостью. В таком варианте доработки ЗУ показаны на рис. 2.

Рис. 2. Доработанное ЗУ

В оригинальном ЗУ в выходном выпрямителе применён диод 1N4937, который заменён диодом Шотки 1N5818, что позволило увеличить выходное напряжение. После такой доработки сняты зависимости выходного напряжения от тока нагрузки, которые показаны синим цветом на рис. 3. Амплитуда пульсаций выходного напряжения с ростом тока нагрузки увеличивается с 50 до 300 мВ. При токе нагрузки более 300 мА появляются пульсации частотой 100 Гц.

Рис. 3. Зависимости выходного напряжения от тока нагрузки

Зависимости показывают, что стабильность выходного напряжения в ЗУ невысока. Обусловлено это тем, что его стабилизация осуществляется косвенно контролем напряжения на обмотке II, а именно, за счёт выпрямления импульсов на обмотке II и подачи закрывающего напряжения через стабилитрон ZD (напряжение стабилизации 5,6. 6,2 В) на базу транзистора Q1.

Для повышения стабильности выходного напряжения и возможности его регулировки на втором этапе доработки введена микросхема DA1 (параллельный стабилизатор напряжения). Управление преобразователем и обеспечение гальванической развязки реализованы с помощью транзисторной оптопары U1. Для подавления импульсных помех с частотой автогенератора дополнительно установлен фильтр L1C6C8. Резистор R9 удалён.

Выходное напряжение устанавливают переменным резистором R12. Когда напряжение на управляющем входе микросхемы DA1 (вывод1) превысит 2,5 В, ток через микросхему и, соответственно, через излучающий диод оптопары U1 резко возрастёт. Фототранзистор оптопары откроется, и на затвор базы транзистора Q1 поступит закрывающее напряжение с конденсатора С4. Это приведёт к тому, что скважность импульсов автогенератора уменьшится (или произойдёт срыв генерации). Выходное напряжение перестанет расти и начнёт плавно уменьшаться вследствие разрядки конденсаторов С5 и С8.

Когда напряжение на управляющем входе микросхемы станет менее 2,5 В ток через неё уменьшится и фототранзистор закроется. Скважность импульсов автогенератора возрастёт (или он начнёт работу), и выходное напряжение станет расти. Интервал выходного напряжения, который можно установить резистором R12, — 3,3. 6 В. Напряжения менее 3,3 В с учётом падения на излучающем диоде оптопары оказывается недостаточно для нормальной работы микросхемы. Зависимости выходного напряжения (для разных значений) от тока нагрузки доработанного устройства показаны красным цветом на рис. 3. Амплитуда пульсаций выходного напряжения — 20. 40 мВ.

Элементы (кроме переменного резистора) второго этапа доработки размещены на односторонней печатной плате из фольгированного стеклотекстолита толщиной 0,5. 1 мм, её чертёж показан на рис. 4. Монтаж — со стороны печатных проводников. Можно при-менить постоянные резисторы МЛТ, С2-23, Р1-4, конденсаторы С6, С7 — керамические, С5 — оксидный импортный, он снят с материнской платы персонального компьютера, С8 — оксидный низкопрофильный импортный. Поскольку выходное напряжение приходится устанавливать нечасто, применён не переменный резистор, а подстроечный PVC6A (POC6AP). Это позволило установить его на задней стенке корпуса ЗУ. Дроссель L1 намотан в один слой проводом ПЭВ-2 0,4 на цилиндрическом ферритовом магнитопроводе диаметром 5 мм и длиной 20 мм (от дросселя ИИП компьютера). Можно применить оптопары серии РС817 и аналогичные. Плату с деталями (рис. 5) вставляют в свободное место ЗУ (частично над конденсатором С1), соединения проводят отрезками изолированного провода. Для подстроечного резистора в задней стенке ЗУ делают отверстие соответствующих размеров, в которое его вклеивают. После проверки устройства резистор R12 снабжают шкалой (рис. 6).

Рис. 4. Печатная плата и элеменеты на ней

Рис. 5. Плата с деталями

Рис. 6. Шкала на ЗУ

Второй вариант доработки ЗУ — введение в него стабилизатора(или ограничителя) тока. Это позволит заряжать Li-Ion или Ni-Cd, Ni-MH аккумуляторы и батареи, содержащие до четырёх аккумуляторов. Схема такой доработки показана на рис. 7. С помощью переключателя можно выбрать режимы работы: блок питания или один из двух режимов «ЗУ» с ограничением тока. Конденсатор 220 мкФ (С5) заменён конденсатором ёмкостью 470 мкФ, но на большее напряжение, поскольку в режимах «ЗУ» без нагрузки выходное напряжение может увеличиться до 6. 8 В.

Рис. 7. Схема второго варианта доработки ЗУ

В режиме «БП» устройство работает в штатном режиме. При переходе в один из режимов «ЗУ» выходной ток протекает через резистор R10 (или R11). Когда напряжение на нём достигнет 1 В, часть тока начнёт ответвляться в излучающий диод оптопары U1, что приведёт к открыванию фототранзистора. Это приведёт к уменьшению выходного напряжения и стабилизации (ограничению) выходного тока Iвых. Его значение можно определить по приближённым формулам: Iвых = 1 /R10 или Iвых = 1/R11. Подборкой этих резисторов устанавливают желаемое значение тока. Полевой транзистор VT1 ограничивает ток через излучающий диод оптопары и тем самым защищает его от выхода из строя.

Большинство деталей размещают на односторонней печатной плате (рис. 8 и рис. 9) из фольгированного стеклотекстолита толщиной 0,5. 1 мм. Полевой транзистор должен быть с начальным током стока не менее 25 мА. Переключатель — любой малогабаритный движковый на одно или два направления и три положения, например SK23D29G, его размещают на задней стенке ЗУ и снабжают шкалой. Если применить переключатель на большее число положений, можно увеличить число номинальных значений тока и расширить тем самым номенклатуру заряжаемых аккумуляторов.

Рис. 8. Печатн ая плата и элеменеты на ней

Рис. 9. Плата с деталями

Поскольку зарядка осуществляется стабильным током, её следует проводить определённое время, которое зависит от типа и ёмкости заряжаемого аккумулятора или батареи.

Автор: И. Ннчаев, г. Москва

Мнения читателей

1.Возможно ли поднять выходное напряжение до 12-15вольт простой доработкой(установкой стабилитрона на 12-15В, или TL431. )?2.Стабилитрон удалять надо из схемы(рис.1, рис.7) при описанной доработке. ?(на схеме просто это не ясно. )3. Благодарю, за ответ заранее; и автора!

анатолий / 23.12.2017 — 19:22

очень полезная информация.дано подробное описание проводимой доработки,понятное любому «чайнику».Спасибо.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Источник

Можно ли усилить силу тока зарядки для телефона

Многие задаются вопросом: можно ли увеличить силу тока зарядного устройства? Связан этот вопрос зачастую с тем, что владельцев мобильных устройств не устраивает, что они заряжаются крайне долго. Желая сократить время зарядки своего девайса, они и задают подобные вопросы. Ответ скорее «нет», чем «да».

Увеличить силу тока в зарядном устройстве теоретически конечно можно. Но для этого потребуются огромные знания, опыт и вмешательство в схему З/У. Это может привести к фатальным последствиям: короткому замыканию, взрыву гаджета, удару током и даже пожару. Однако в статье будет дано несколько лайфхаков, которые сделают процесс зарядки смартфона быстрее.

Что может случиться, если заряжать неоригинальным З/У?

Сделать так, чтобы устройство заряжалось намного быстрее — можно. Но опять-таки, здесь присутствуют определенные нюансы. Например: производитель предписывает использование только оригинальных зарядных устройств. Связано это с гарантированной их безопасностью и подбором в них оптимальной мощности зарядки, при которой аккумуляторная батарея прослужит дольше, и при этом будет набирать емкость крайне быстро.

Если же подавать на аккумулятор больший ток (с целью зарядить мобильный телефон быстрее), используя для этого более мощное зарядное устройство, то сам аккумулятор может не выдержать нагрузки и прийти в негодность. Самое безвредное, что может случиться — это калибровка аккумуляторной батареи нарушится, и телефон будет неверно показывать заряд. Здесь поможет проведение полных циклов зарядки и разрядки.

Читайте также:  Беспроводная зарядка для фонаря

Если же, наоборот, использовать неоригинальное зарядное устройство меньшей мощности, то смартфон элементарно будет дольше заряжаться. Хотя аккумулятору это вредить не будет. Для него это, наоборот, щадящий режим. Но не того ни другого допускать нельзя. Важно использовать только свое зарядное устройство, или соответствующее параметрам оригинального З/У.

Что делать, если фирменное зарядное устройство, или провод от него пришли в негодность?

Однако, если пришел в негодность кабель или зарядный блок, то их в любом случае нужно менять. И не факт, что оригинальное устройство найдется.

Зарядное устройство подает ток определенной мощности на батарею. Но именно от кабеля зависит пропустит он его или нет. Плохие кабели могут ограничивать мощность зарядного блока. Так, например, если зарядник обладает силой тока 2А, а на проводе указано значение 1А, то процесс набора энергии смартфоном будет проходить крайне долго. Провод в этом случае тоже должен быть на 2А. Также, когда сгорел блок питания, а его уже успели выкинуть, то на официальном сайте компании производителя смартфона нужно найти информацию о том, какие параметры имеет оригинальное зарядное устройство. Затем по этим параметрам следует подобрать зарядник.

Как сократить время зарядки

В современных и высокотехнологичных смартфонах установлен контроллер, который препятствует подаче на АКБ большей силы тока. Но только в современных! Поэтому в них использовать более мощные зарядники можно. В случае чрезмерной подачи тока, аккумулятор просто не будет брать излишки.

Использовать более мощные З/У, опять же, в современных смартфонах не нужно. Они по умолчанию оснащаются комплектом с быстрой зарядкой. Однако есть исключение: только две компании ограничивают комплект поставки маломощными зарядными блоками, чтобы пользователь приобретал более мощные З/У дополнительно и за отдельную плату. К таким компаниям относятся Sony и Apple. Чтобы не переплачивать, можно узнать характеристики оригинальных мощных З/У и приобрести их аналог, исходя из совета ниже.

Также, чтобы узнать, может ли на других девайсах аккумулятор более ускоренно набирать заряд, понадобится установить на них приложение Ampere. Оно покажет в процессе набора емкости аккумулятором, какую мощность тока он способен выдержать без вреда для себя. Далее схема та же: требуется записать значения и подобрать по ним зарядный блок.

Если хотите быть в курсе всех изменений и событий, то обязательно ставьте лайки, делитесь материалами и подписывайтесь на канал . Наша задача — доносить к вам только полезную и актуальную информацию.

Источник

3 шага, чтобы ускорить зарядку мобильного телефона, когда это не обходимо

Кто не хочет, чтобы его смартфон заряжался вместо нескольких часов за пару минут? Ускоренная зарядка телефона избавляет от утомительного ожидания. 10-30 минут, и батарея заполняется наполовину.

Что такое ускоренная зарядка

Работы над ускорением зарядки ведутся с тех пор, как появились высокотехнологичные смартфоны. Многие вспоминают время, когда старенький кнопочный Nokia держал заряд неделю. При этом они упускают из виду, что современные телефоны имеют большую производительность (в разы). Добавить к этому выросшее качество изображения, вместительность памяти, огромный сенсорный экран. Вполне закономерно, что, чем «круче» смартфон, тем больше он «кушает».

Подзарядка для смартфона

Чтобы поддерживать автономность современных телефонов, производители увеличили емкость аккумуляторов. Соответственно, заряжаться они стали дольше. Для тех, кто не знает, как заряжается батарея, есть простое объяснение:

Когда телефон подключается через зарядное устройство к сети, в аккумулятор поступает энергия. Чтобы батарея не перегрелась, мощность ограничивается специальным контроллером внутри телефона. Обычно он пропускает не больше 5 Вт.

Медленная зарядка безопаснее. Производители телефонов подстраховались, чтобы не произошло перезарядки малоемкостных батарей. Но современные устройства способны справиться с большей мощностью.

Принцип ускоренной зарядки заключается в увеличении мощности тока, подаваемого на аккумулятор. Специальные устройства могут давать 10 Вт и даже много больше. А вот способен ли телефон их принять, зависит уже от его характеристик.

Новые технологии

Казалось бы, нужно просто увеличить мощность для ускорения процесса зарядки. Но это неправильно. Вместе с этим вырастет нагрев батареи. Именно поэтому были разработаны стандарты быстрой зарядки. Суть состоит в регулировке напряжения и силы тока. Для этого применяются разные алгоритмы. Кроме того, быстрое зарядное устройство и телефон сообщаются. Становится понятно, сколько заряда требуется, и вообще, потянет ли смартфон большую мощность.

Подзарядка смартфоны

На 2021 год многие производители гаджетов обзавелись своим стандартом.

Сетевая зарядка Aukey

  • Quick Charge. Принадлежит компании Qualcomm, которая является первооткрывателем быстрой зарядки. Заявленная входная мощность доходит до 24 Вт и выше. Но на деле смартфоны с QC 2.0 и 3.0 чаще получают до 18 Вт. С технологией «дружат» гаджеты со специальными процессорами Qualcomm, а для QC 3.0 нужен Snapdragon. Сами зарядки бывают класса А и В. Первые встречаются намного чаще. С обычным кабелем micro-USB они дают 24 Вт, а с USB Type-C – 36 Вт.
  • Технология от компании Lenovo (Motorola). В ее основе лежит Quick Charge 2.0, поэтому и совместимость между ними хорошая. Но в отличие от QC 2.0 с 18 Вт, TurboPower 30 дает 28,5 Вт.
  • Pump Express. Соперничает Quick Charge. Разработка принадлежит MediaTek. Данный вариант примечателен тем, что аккумулятор может быстро заряжаться напрямую, минуя контроллер (у версии PE 3.0). Для поддержки необходимы только порт и провод USB Type-C. Список совместимых девайсов очень обширный.
  • Adaptive Fast Charging. Наиболее популярная технология от Samsung. Ее поддерживают все телефоны линейки Note и S-серии, начиная с Galaxy Note 4 и Galaxy S6. Максимальная мощность, правда, небольшая – 15 Вт при напряжении в 9 В. Этого хватает, чтобы зарядить аккумулятор, емкостью 3000 мАч за полчаса на 50%.
  • VOOC Flash Charging и Dash Charge. Принадлежат одной компании ВВК. VOOC Flash Charging представлена под брендом Oppo. При напряжении 5 В мощность составляет 25 Вт. Аккумулятор 3000 мАч за 30 минут восполняет 75% заряда. Dash Charge применяется в смартфоне OnePlus 3. Быстрая зарядка работает только с «родным» кабелем. Мощность – 20 Вт при напряжении 5 В. Телефон заряжается за полчаса до 63%.
  • Super mCharge. Многообещающая технология от Meizu. При 11 Вт устройства дают мощность 55 Вт. Это позволяет заряжать аккумулятор 3000 мАч за 20 минут полностью! Телефон должен поддерживать стандарт. Также понадобится специальное зарядное устройство и кабель.
  • USB Power Delivery. Технология, продвигаемая Google. В будущем планируется внедрить ее на всех устройствах Андроид. Шаг навстречу уже сделала компания Qualcomm: USB PD совместим с QC0. Также технологию использует Apple (Айфон 8, XS, XR, X, Айпад Про, Макбук 12). Быстрая зарядка от Apple требует наличия стороннего провода Lightning-USB-C с поддержкой USB-PD. При напряжении 14,5 Вт мощность составляет 29 Вт.

Телефон на зарядке

Как ускорить зарядку телефона

Ускорить зарядку смартфона или планшета очень просто. Для этого необходимо специальное зарядное устройство. Алгоритм действий следующий:

  1. Зайти на сайт производителя гаджета и выяснить, какую технологию быстрой зарядки поддерживает ваша модель телефона или планшета.
  2. Выбрать зарядное устройство, поддерживающее ту же технологию. Обратить внимание, какой к нему нужен провод.
  3. Включить зарядное устройство в сеть, и подключить телефон. Полчаса, и гаджет наполовину зарядится.

Зарядка для смартфона

Быстрое устройство работает «быстро» только до восполнения 50-75% заряда батареи. Затем мощность постепенно снижается. В конце, от 90% до 100% телефон заряжается медленно. То есть, от наполненности аккумулятора напрямую зависит скорость зарядки.

Оригинальные vs китайские устройства

Средняя стоимость сертифицированных быстрых зарядных устройств составляет 1000 рублей. Желая сэкономить, многие устремляют свой взор на китайские подделки. Например, на сайте Алиэкспресс можно заказать быструю зарядку за 200-300 рублей. Обзор одного такого устройства можно посмотреть на видео:


Да, китайские быстрые зарядки справляются со своей задачей. Однако они не безопасны. Сделанные из некачественных материалов, блоки питания перегреваются. В лучшем случае они быстро выходят из строя, в худшем – приводят к перегреву и поломке телефона.

Вопросы и ответы

Вопрос: Что будет, если подключить к телефону несовместимую быструю зарядку?

Ответ: Ничего. Заряд будет осуществляться в базовом «медленном» режиме. В нем напряжение ограничено 5 В, а входной ток 2-3 А.

Вопрос: Как отразится быстрая зарядка на долговечности батареи?

Ответ: Нет. Постепенно емкость всех аккумуляторов сама по себе снижается. На этот процесс влияет температура и скорость заряда. При использовании сертифицированных устройств нагрева батареи не происходит. Что касается скорости заряда, то ее можно увеличить без каких-либо последствий, если ток будет не выше 1С. Большая часть зарядок вписывается в эти рамки. В технологиях, где ток составляет 2С, емкость батареи снижается до 20% за 800 циклов. Что и без того входит в гарантийный срок.

Появление высокотехнологичных гаджетов, с одной стороны, достижение. А с другой, пользователям приходится искать способы сделать их автономными. Аккумуляторы с большой емкостью можно заряжать реже, но занимает это больше времени. Решить проблему можно только быстрыми зарядками. Отключение блютза, gps, ненужных программ, уменьшение яркости (то, что делают приложения «быстрая зарядка») – капля в море, которая ничего не решит. Естественно, во время зарядки телефона не нужно им пользоваться.

Источник