Меню

Мощности блоков питания для компьютеров своими руками

Мощный блок питания путем модернизации блоков меньшей мощности

C ежегодным апгрейдом процессора, материнки, памяти, видео, я давно смирился, как с неизбежным. Но апгрейд блока питания меня почему-то здорово нервирует. Если железо прогрессирует кардинально, то в схемотехнике блока питания таких принципиальных изменений практически нет. Ну, транс побольше, провода на дросселях потолще, диодные сборки помощнее, конденсаторы. Неужели нельзя купить блок питания помощнее, так сказать на вырост, и жить хотя бы пару лет спокойно. Не задумываясь о такой относительно простой вещи, как качественное электропитание.

Казалось чего бы проще, купи блок питания самой большой мощности, какую найдешь, и наслаждайся спокойной жизнью. Но не тут то было. Почему-то все работники компьютерных фирм уверены, что 250-ти ваттного блока питания хватит вам с избытком. И, что бесит больше всего, начинают безапелляционно поучать и безосновательно доказывать свою правоту. Тогда на это резонно замечаешь, что знаешь, чего хочешь и готов за это платить и надо побыстрее достать то, чего спрашивают и заработать законную прибыль, а не злить незнакомого человека своими бессмысленными, ничем не подкрепленными уговорами. Но это только первое препятствие. Идем дальше.

Допустим, вы все же нашли мощный блок питания, и тут вы видите, например, такую запись в прайсе

  • Power Man PRO HPC 420W – 59 уе
  • Power Man PRO HPC 520W – 123 уе

При разнице в 100 ватт цена выросла вдвое. А уж если брать с запасом, то нужно 650 или больше. Сколько это будет стоить? И это еще не все!

реклама

В подавляющем большинстве современных блоков питания используется микросхема SG6105. А схема включения ее, имеет одну очень неприятную особенность – она не стабилизирует напряжения 5 и 12 вольт, а на ее вход подается среднее значение этих двух напряжений, полученное с резисторного делителя. И стабилизирует она это среднее значение. Из-за этой особенности часто происходит такое явление, как «перекос напряжений». Ранее использовали микросхемыTL494, MB3759, KA7500. Они имеют ту же особенность. Приведу цитату из статьи господина Коробейникова.

«. Перекос напряжений возникает из-за неравномерного распределения нагрузки по шинам +12 и +5 Вольт. Например, процессор запитан от шины +5В, а на шине +12 висит жёсткий диск и CD привод. Нагрузка на +5В во много раз превышает нагрузку на +12В. 5 вольт проваливается. Микросхема увеличивает duty cycle и +5В приподнимается, но ещё сильнее увеличивается +12 – там меньше нагрузка. Мы получаем типичный перекос напряжений. «

На многих современных материнских платах процессор питается от 12 вольт, тогда происходит перекос наоборот, 12 вольт понижается, а 5 повышается.

И если в номинальном режиме компьютер нормально работает, то при разгоне потребляемая процессором мощность увеличивается, перекос усиливается, напряжение уменьшается, срабатывает защита блока питания от понижения напряжения и компьютер отключается. Если не происходит отключения, то все равно пониженное напряжение не способствует хорошему разгону.

Так, например, было у меня. Даже написал на эту тему заметку – «Лампочка оверклокера» Тогда у меня в системнике работали два блока питания – Samsung 250 W, Power Master 350 W. И я наивно верил, то 600 ватт более чем достаточно. Достаточно может и достаточно, но из-за перекоса все эти ватты бесполезны. Этот эффект я по незнанию усилил тем, что от Power Master подключил материнку, а от Samsung винт, дисководы и т.д. То есть вышло – с одного блока питания берется, в основном 5 вольт, с другого 12. А другие линии «в воздухе», что и усилило эффект «перекоса».

После этого я приобрел 480 ваттный блок питания Euro case. Из-за своего пристрастия к тишине, переделал его в безвентиляторный, о чем тоже писал на страницах сайта. Но и в этом блоке стояла SG6105. При его тестировании я тоже столкнулся с явлением «перекоса напряжений». Только что приобретенный блок питания непригоден для разгона!

И это еще не все! Мне все хотелось приобрести второй компьютер, а старый оставить «для опытов», но элементарно «давила жаба». Недавно я эту зверюгу все же уговорил и приобрел железо для второго компа. Это конечно отдельная тема, но я для него купил блок питания – PowerMan Pro 420 W. Решил проверить его на предмет «перекоса». А так как новая мать питает процессор по шине 12 вольт, то по ней я и проверил. Как? Узнаете, если дочитаете статью до конца. А пока скажу, что при нагрузке 10 ампер, двенадцать вольт провалилось до 11.55. Стандарт допускает отклонение напряжений плюс-минус 5 процентов. Пять процентов от 12 это 0.6 вольта. Иными словами при токе 10 ампер напряжение упало почти до предельно допустимой отметки! А 10 ампер соответствует 120-ти ваттам потребления процессора, что при разгоне вполне реально. В паспорте к этому блоку по шине 12 вольт заявлен ток 18 ампер. Я думаю, не видать мне этих ампер, так как от «перекоса» блок питания выключится гораздо раньше.

Итого – четыре блока питания за два года. И надо брать пятый, шестой, седьмой? Нет, хватит. Надоело платить за то, что заранее не нравится. Что мне мешает самому сделать киловаттный блок питания и пожить спокойно пару лет, с уверенностью в качестве и количестве питания своего любимца. К тому же я затеял изготовление нового корпуса. Корпус я начал делать преогромный и блок питания, нестандартного размера, должен поместиться там без проблем. Но и обладателям стандартных корпусов может пригодиться такое решение. Всегда можно сделать внешний блок питания, тем более прецеденты уже есть. Кажется, Zalman выпустил внешний блок питания.

Конечно, делать блок питания такой мощности «с нуля» — сложно, долго, да и хлопотно. Поэтому и появилась идея собрать один блок из двух фабричных. Тем более они уже есть и, как выяснилось, в теперешнем виде непригодны для разгона. На эту мысль меня натолкнула все та же статья господина Коробейникова.

«. Для введения раздельной стабилизации нужен второй трансформатор и вторая микросхема ШИМ, так и делается в серьёзных и дорогих серверных блоках. «

реклама

В компьютерном блоке питания существует три сильноточные линии с напряжением 5, 12 и 3.3 вольта. У меня есть два стандартных блока питания, пусть один из них вырабатывает 5 вольт, а другой, помощнее, 12 и все остальные. Напряжение 3.3 вольта стабилизируется отдельно и явления перекоса не вызывает. Линии вырабатывающие -5, -12 и т.д. – маломощны и эти напряжения можно взять с любого блока. А для осуществления этого мероприятия, использовать принцип, изложенный в той же статье г. Коробейникова – отключать ненужное напряжение от микросхемы, а нужное подрегулировать. То есть, теперь SG6105 будет стабилизировать только одно напряжение и, следовательно, явление «перекоса напряжений» не будет.

Так же облегчается режим работы каждого блока питания. Если посмотреть силовую часть, типовой схемы блоков питания (Рис.2), то видно, что обмотки 12, 5 и 3.3 вольта представляют собой одну общую обмотку с отводами. И если с такого транса брать не сразу все три, а только одно напряжение, то мощность трансформатора останется прежней, но на одно напряжение, а не на три.

К примеру, блок по линиям 12, 5, 3.3 вольта выдавал 250 ватт, то теперь практически эти же 250 ватт мы получим по линии, например, 5 вольт. Если раньше общая мощность делилась между тремя линиями, то теперь всю мощность можно получить на одной линии. Но на практике для этого нужно заменить диодные сборки на используемой линии на более мощные. Или включить параллельно дополнительные сборки, взятые с другого блока, на котором эта линия использоваться не будет. Так же максимальный ток будет ограничивать сечение провода дросселя. Может сработать и защита блока питания от перегрузки по мощности (хотя этот параметр можно подрегулировать). Так что полностью утроенную мощность мы не получим, но прибавка будет, да и греться блоки будут гораздо меньше. Можно, конечно, перемотать дроссель проводом большего сечения. Но об этом позже.

Перед тем, как приступить к описанию модификации, нужно сказать несколько слов. Очень непросто писать о переделках электронного оборудования. Не все читатели разбираются в электронике, не каждый читает принципиальные схемы. Но в то же время есть читатели, занимающиеся электроникой профессионально. Как ни напишешь – окажется, что для кого-то непонятно, а для кого-то раздражающе примитивно. Я все же попытаюсь написать так, что бы было понятно подавляющему большинству. А специалисты, думаю, меня простят.

Так же необходимо сказать, что все переделки оборудования вы производите на свой страх и риск. Любые модификации лишают вас гарантии. И естественно, автор, за любые последствия ответственности не несет. Не лишним будет сказать, что человек, берущийся за такую модификацию, должен быть уверен в своих силах, и иметь соответствующий инструмент. Данная модификация выполнима на блоках питания собранных на основе микросхемы SG6105 и немного устаревших TL494, MB3759, KA7500.

Для начала пришлось поискать datasheet на микросхему SG6105 – это оказалось не так уж сложно. Привожу из datasheet нумерацию ног микросхемы и типовую схему включения.

Рис. 2. Типовая схема включения.

Рис. 3. Схема включения SG6105

Опишу сначала общий принцип модернизации. Сначала модернизация блоков на SG6105. Нас интересуют выводы 17(IN) и 16(COMP). К этим выводам микросхемы и подключен резисторный делитель R91, R94, R97 и подстроечный резистор VR3. На одном блоке отключаем напряжение 5 вольт, для этого выпаиваем резистор R91. Теперь подстраиваем величину напряжения 12 вольт резистором R94 грубо, а переменным резистором VR3 точно. На другом блоке наоборот, отключаем 12 вольт, для этого выпаиваем резистор R94. И подстраиваем величину напряжения 5 вольт резистором R91 грубо, а переменным резистором VR3 точно.

Провода PC – ON всех блоков питания соединяются между собой и подпаиваются к 20-ти контактному разъему, который потом подключаем к материнке. С проводом PG сложнее. Я взял этот сигнал с более мощного блока питания. В дальнейшем можно реализовать несколько более сложных вариантов.

Рис. 4. Схема распайки разъема

Теперь об особенностях модернизации блоков на основе микросхемы TL494, MB3759, KA7500. В этом случае сигнал обратной связи с выходных выпрямителей напряжений 5 и 12 вольт подается на вывод 1 микросхемы. Поступаем немного по-другому – перерезаем дорожку печатной платы около вывода 1. Другими словами отключаем вывод 1 от остальной схемы. И на этот вывод подаем нужное нам напряжение через резисторный делитель.

Рис 5. Схема для микросхем TL494, MB3759, KA7500

В этом случае номиналы резисторов одинаковы и для стабилизации 5 вольт и для 12. Если вы решили использовать блок питания для получения 5-ти вольт, то резисторный делитель подключаете к выходу 5В. Если для 12, то к 12.

реклама

Наверно хватит теории и пора приступать к делу. Сначала надо определиться с измерительными приборами. Для измерения напряжений я применю одни из самых дешевых мультиметров DT838. Точность измерения напряжения у них 0.5 процента, что вполне приемлемо. Для измерения тока использую стрелочный амперметр. Токи нужно мерить большие, поэтому придется самому изготовить амперметр из стрелочной измерительной головки и самодельного шунта. Готовый амперметр с фабричным шунтом приемлемого размера я найти не смог. Нашел амперметр на 3 ампера, разобрал его. Вытащил из него шунт. Получился микроамперметр. Дальше была небольшая сложность. Для изготовления шунта и калибровки амперметра, сделанного из микроамперметра, был нужен образцовый амперметр, способный мерить ток в пределах 15-20 ампер. Для этих целей можно было бы применить токовые клещи, но у меня таковых не оказалось. Пришлось искать выход. Выход я нашел самый простой, конечно, не очень точный, но вполне. Шунт я вырезал из стального листа толщиной 1мм, шириной 4мм и длиной 150 мм. К блоку питания через этот шунт подключил 6 лампочек 12V, 20W. По закону Ома через них потек ток равный 10 амперам.

Один провод от микроамперметра соединил с концом шунта, а второй двигал по шунту, пока стрелка прибора не показала 7 делений. До 10 делений не хватило длины шунта. Можно было подрезать шунт потоньше, но из-за нехватки времени решил оставить, как есть. Теперь 7 делений этой шкалы соответствуют 10 амперам.

Фото 1 Бюджетный стенд для подбора шунта.

Фото 2. Стенд с включенными 6-ю лампочками 12вольт 20 ватт.

реклама

На последней фотографии видно, как просело напряжение 12 вольт при токе 10 ампер. Блок питания PowerMan Pro 420 W. Минус 11.55 показывает из-за того, что я перепутал полярность щупов. На самом деле конечно плюс 11.55. Этот же стенд я буду использовать как нагрузку для регулировки готового блока питания.

Читайте также:  Eurosat DVB 8004 не включается Ремонтируем блок питания

Новый блок питания я буду делать на основе PowerMaster 350 W, он будет вырабатывать 5 вольт. Согласно наклейке на нем, он по этой линии должен давать 35 ампер. И PowerMan Pro 420 W. С него я буду брать все остальные напряжения.

В этой статье я покажу общий принцип модернизации. В дальнейшем я планирую переделать полученный блок питания в пассивный. Возможно, перемотаю дроссели проводом большего сечения. Доработаю соединительные кабели на предмет уменьшения наводок и пульсаций. Сделаю мониторинг токов и напряжений. И возможно многое другое. Но это в будущем. Все это описывать в данной статье я не буду. Цель статьи – доказать возможность получения мощного блока питания, путем модернизации двух-трех блоков меньшей мощности.

Немного о технике безопасности. Все перепайки производятся, естественно, при выключенном блоке. После каждого выключения блока, перед дальнейшими работами, разряжайте большие конденсаторы. На них присутствует напряжение 220 вольт, и заряд они накапливают очень приличный. Не смертельный, но крайне неприятный. Электрический ожог заживает долго.

Начну с PowerMaster. Разбираю блок, вынимаю плату, отрезаю лишние провода.

реклама

Фото 3. Блок PowerMaster 350 W

Нахожу микросхему ШИМ, она оказалась TL494. Нахожу вывод 1, осторожно перерезаю печатный проводник и подпаиваю к выводу 1 новый резисторный делитель (см. Рис5). Подпаиваю вход резисторного делителя к пятивольтовому выходу блока питания (обычно это красные провода). Еще раз проверяю правильность монтажа, это никогда не бывает лишним. Подключаю модернизированный блок к своему бюджетному стенду. На всякий случай, спрятавшись за стул, включаю. Взрыва не произошло и это даже вызвало легкое разочарование. Для запуска блока соединяю провод PS ON с общим проводом. Блок включается, лампочки загораются. Первая победа.

Переменным резистором R1 на малой нагрузке блока питания (две лампочки по 12V, 20W и спот 35W) выставляю выходное напряжение 5 вольт. Напряжение замеряю непосредственно на выходном разъеме.

Фотоаппарат у меня не самый лучший, мелкие детали не видит, поэтому прошу прощения за качество снимков.

реклама

Блок питания на непродолжительное время можно включать без вентилятора. Но нужно следить за температурой радиаторов. Будьте осторожны, на радиаторах некоторых моделей блоков питания присутствует напряжение, иногда высокое.

Не выключая блок, начинаю подключать дополнительную нагрузку – лампочки. Напряжение не меняется. Блок стабилизирует хорошо.

На этой фотографии я подключил к блоку все лампочки, какие были в наличии – 6 ламп по 20w, две по 75 w, и спот 35w. Ток, текущий через них по показаниям амперметра в пределах 20 ампер. Никакого «проседания», никаких «перекосов»! Полдела сделано.

Теперь берусь за PowerMan Pro 420 W. Так же разбираю его.

реклама

Нахожу на плате микросхему SG6105. За тем отыскиваю нужные выводы.

Принципиальная схема, приведенная в статье г. Коробейникова, соответствует моему блоку, нумерация и номиналы резисторов те же. Для отключения 5-ти вольт выпаиваю резистор R40 и R41. Вместо R41 впаиваю два переменных резистора соединенных последовательно. Номинал 47 кОм. Это для грубой регулировки напряжения 12 вольт. Для точной регулировки используется резистор VR1 на плате блока питания

Рис 6. Фрагмент схемы блока питания PowerMan

реклама

Опять достаю свой примитивный стенд и подключаю к нему блок питания. Сначала подключаю минимальную нагрузку – спот 35W.

Включаю, подстраиваю напряжение. Затем, не выключая блок питания, подключаю дополнительные лампочки. Напряжение не меняется. Блок прекрасно работает. По показаниям амперметра ток достигает 18 ампер и никакого «проседания» напряжения.

Второй этап закончен. Теперь осталось проверить, как будут работать блоки в паре. Перекусываю провода красного цвета идущие от PowerMan к разъему и молексам, изолирую их. А к разъему и молексам подпаиваю пятивольтовый провод от PowerMaster 350 W, так же соединяю общие провода обоих блоков. Провода Power On блоков питания объединяю. PG беру с PowerMan. И подключаю этот гибрид к своему системному блоку. На вид он несколько странен и если кому-то захочется узнать о нем поподробнее, прошу на ПС.

  • Мать Epox KDA-J
  • Процессор Athlon 64 3000
  • Память Digma DDR500, две планки по 512Mb
  • Винт Samsung 160Gb
  • Видео GeForce 5950
  • DVD RW NEC 3500

Включаю, все прекрасно работает.

Опыт удался. Теперь можно приступать к дальнейшей модернизации «объединенного блока питания». Перевод его на пассивное охлаждение. На фотографии видна панель с приборами – это все будет подключено к данному блоку. Стрелочные приборы – мониторинг токов, цифровые приборы в круглых отверстиях под стрелочными – мониторинг напряжений. Ну и тахометр, и все такое, об этом я уже писал на своей персоналке. Но это в дальнейшем.

Влияние «объединенного блока питания» на дальнейший разгон я не проверял. Доделаю, тогда и проверю. Процессор уже разогнан до 2.6 гигагерц по шине, при напряжении на проце 1.7 вольта. Гнал я его на безвентиляторном блоке питания, но при таком разгоне 12 вольт на нем проседали до 11.6 вольта. А гибрид выдает ровно 12. Так что, возможно, еще немного мегагерц я из него выжму. Но это будет другая история.

Перечень используемой литературы:

  1. datasheet на микросхему SG6105
  2. Статья г. Коробейникова
  3. Журнал «Радио». – 2002.-№ 5, 6, 7. «Схемотехника блоков питания персональных компьютеров» авт. Р. Александров

Ждём Ваших комментариев в специально созданной ветке конференции.

Источник



Доработка компьютерных блоков питания ATX, модернизация, улучшение, повышение надежности, снижение помех и пульсаций

Статья основана на 12-летнем опыте ремонта и обслуживания компьютеров и их блоков питания.

Стабильная и надежная работа компьютера зависит от качества и свойств его комплектующих. С процессором, памятью, материнкой более-менее все понятно – чем больше мегагерц, гигабайт и т. д., тем лучше. А чем отличаются блоки питания за 15 $ и за, скажем, 60 $ ? Те же напряжения, та же мощность на этикетке – зачем платить больше? В результате приобретается блок питания с корпусом за 25-35 $ Себестоимость же блока питания в нем с учетом доставки из Китая, растаможки и перепродажи 2-3 посредниками, составляет всего 5-7 $ . В результате компьютер может глючить, зависать, перезагружаться ни с того ни с сего. Стабильность работы компьютерной сети также зависит от качества блоков питания компьютеров, ее составляющих. При работе с блоком бесперебойного питания, и в момент переключения его на внутреннюю батарею, перезагружаться. Но самое страшное, если в результате выхода из строя, такой блок питания похоронит еще пол-компьютера включая жесткий диск. Восстановление информации с жестких дисков, сожженных блоком питания, нередко превышает стоимость самого жесткого диска в 3-5 раз… Объясняется все просто – так, как качество блоков питания сложно сходу проконтролировать, особенно если они продаются внутри корпусов, то это повод для китайского дядюшки Ли сэкономить за счет качества и надежности – за наш счет.

А делается все чрезвычайно просто – наклейкой новых бирок с большей заявленной мощностью на старые блоки питания. Мощность на наклейках из года в год все больше и больше, а начинка блоков все та же. Этим грешат Codegen, JNC, Sunny, Ultra, разные «no name».

Типичный китайский дешевый блок питания ATX, который можно доработать

Рис. 1 Типичный китайский дешевый блок питания ATX. Доработка целесообразна.

Факт: новый блок питания Codegen 300W нагрузили на сбалансированную нагрузку 200 Вт. Через 4 минуты работы задымились его провода, ведущие к разъёму ATX. При этом наблюдался разбаланс выходных напряжений: по источнику +5В – 4, 82В, по +12В – 13,2В.

Чем конструктивно отличается хороший блок питания от тех «no name», что обычно покупаются? Даже не вскрывая крышку, как правило, можно заметить разницу в весе и толщине проводов. За редким исключением хороший блок питания тяжелее.

Но главные отличия внутри. На плате дорогого блока питания все детали на месте, достаточно плотный монтаж, основной трансформатор приличных размеров. В отличие от него, дешевый кажется полупустым. Вместо дросселей вторичных фильтров — перемычки, часть фильтрующих конденсаторов не запаяна вообще, сетевой фильтр отсутствует, трансформатор малых размеров, вторичные выпрямители тоже, либо выполнены на дискретных диодах. Наличие корректора фактора мощности вообще не предусмотрено.

Зачем нужен сетевой фильтр? Во время своей работы любой импульсный блок питания наводит высокочастотные пульсации как по входной (питающей) линии, так и по каждой из выходных. Компьютерная электроника весьма чувствительна к этим пульсациям, поэтому даже самый дешевый блок питания использует пусть упрощенные, минимально достаточные, но все же фильтры выходных напряжений. На сетевых фильтрах обычно экономят, что является причиной выброса в осветительную сеть и в эфир достаточно мощных радиочастотных помех. На что это влияет и к чему это приводит? В первую очередь это «необъяснимые» сбои в работе компьютерных сетей, коммуникаций. Появление дополнительных шумов и помех на радиоприемниках и телевизорах, особенно при приеме на комнатную антенну. Это может вызывать сбои в работе другой высокоточной измерительной аппаратуры, находящейся рядом, или включенной в ту же фазу сети.

Факт: чтобы исключить влияние разных приборов друг на друга, вся медицинская техника проходит жесткий контроль на предмет электромагнитной совместимости. Хирургическая установка на базе персонального компьютера, которая всегда с успехом проходила эту проверку с большим запасом по характеристикам, оказалась забракованной по причине превышения предельно допустимого уровня помех в 65 раз. А там всего то в процессе ремонта был заменен блок питания компьютера на приобретенный в местном магазине.

Еще факт: медицинский лабораторный анализатор со встроенным персональным компьютером вышел из строя – в результате броска сгорел штатный блок питания ATX. Чтобы проверить, не сгорело ли еще что, на место сгоревшего подключили первый попавшийся китаец (оказался JNC-LC250). Нам так и не удалось запустить этот анализатор, хотя все напряжения, выдаваемые новым блоком питания и измеренные мультиметром, были в норме. Хорошо догадались снять и подключить блок питания ATX от другого мед прибора (тоже на базе компьютера).

Наилучший с точки зрения надежности вариант – изначально приобретение и использование качественного блока питания. Но что делать, если денег в обрез? Если голова и руки на месте, то неплохие результаты можно получить уже доработкой дешевых Китайцев. Они – люди экономные и предусмотрительные – спроектировали печатные платы по критерию максимальной универсальности, т. е. таким образом, чтобы в зависимости от количества установленных комплектующих можно было бы варьировать качеством и, соответственно, ценой. Другими словами, если мы установим те детали, на которых производитель сэкономил, и еще кое – что поменяем – получим неплохой блок средней ценовой категории. Конечно, это не сравнить с дорогими экземплярами, где топология печатных плат и схемотехника изначально рассчитывалась для получения хорошего качества, как и все детали. Но для среднестатистического домашнего компьютера вполне приемлемый вариант.

Итак, какой блок подойдет? Критерий первоначального отбора – величина самого большого ферритового трансформатора. Если он имеет бирку, на которой вначале идут цифры 33 или больше и имеет размеры 3х3х3 см или больше – имеет смысл возиться. В противном случае приемлемого баланса напряжений +5В и +12В при изменении нагрузки добиться не удастся, и кроме того трансформатор будет сильно греется, что значительно снизит надежность.

Дальше доработка, состоящая из следующих этапов:

    Заменяем 2 электролитических конденсатора по сетевому напряжению на максимально возможные, способные поместиться на посадочные места. Обычно в дешевых блоках их номиналы 200 µF х 200 V, 220 µF x 200 V или в лучшем случае 330 µF x 200 V. Меняем на 470 µF x 200 V или лучше на 680 µF x 200 V. Эти электролиты, как и любые другие в компьютерных блоках питания, ставить только из серии 105 градусов!

Высоковольтная часть блока питания, вклюсающая выпрямитель, полумостовой инвертор, электролиты на 200 V. Сетевой фильтр отсутствует.

Рис. 2 Высоковольтная часть блока питания, включающая выпрямитель, полумостовой инвертор, электролиты на 200 V (330 µF, 85 градусов). Сетевой фильтр отсутствует.

Установка конденсаторов и дросселей вторичных цепей. Дросселя можно взять из разборки на радиорынке или намотать на соответствующем куске феррита или кольце 10-15 витков провода в эмалевой изоляции диаметром 1,0-2,0 мм (больше лучше). Конденсаторы подойдут на 16 V, Low ESR типа, 105 градусов серия. Емкость следует выбирать максимальной, чтобы конденсатор смог поместиться на штатное место. Обычно 2200 µF. При мотаже соблюдаем полярность!

Низковольтная часть блока питания. Вторичные выпрямители, электролитические конденсаторы и дроссели, некоторые из них отсутствуют.

Рис. 3 Низковольтная часть блока питания. Вторичные выпрямители, электролитические конденсаторы и дроссели, некоторые из них отсутствуют.

Меняем выпрямительные диоды и модули вторичных выпрямителей на более мощные. В первую очередь это касается выпрямительных модулей на 12 V. Это обьясняется тем, что в последние 5-7 лет энергопотребление компьютеров, в частности материнских плат с процессором, возрастало в большей степени по шине + 12 V.

Читайте также:  Dns универсальный блок питания для ноутбука

Выпрямительные модули для вторичных источников

Рис. 4 Выпрямительные модули для вторичных источников: 1 — наиболее предпочтительные модули. Устанавливаются в дорогих блоках питания; 2 — дешевые и менее надежные; 3 — 2 дискретных диода — самый экономный и ненадежный вариант, подлежащий замене.

  • Устанавливаем дроссель сетевого фильтра (место для его установки см. рис. 2).
  • Если радиаторы блока питания выполнены в виде пластин с прорезанными лепестками, разгибаем эти лепестки в разные стороны, чтобы максимально повысить эффективность радиаторов.

    Блок питания ATX с доработанными радиаторами охлаждения

    Рис. 5 Блок питания ATX с доработанными радиаторами охлаждения.
    Одной рукой держим подвергающийся доработке радиатор, другой рукой с помощью плоскогубец с тонкими кончиками отгибаем лепестки радиатора. Держать за печатную плату не следует — высока вероятность повредить пайку деталей, находящихся на радиаторе и вокруг него. Эти повреждения могут быть не видны невооруженным глазом и привести к печальным последствиям.

    Таким образом, вложив в модернизацию дешевого блока питания ATX 6-10$, можно получить неплохой БП для домашнего компьютера.

    Блоки питания боятся нагрева, который приводит к выходу из строя полупроводников и электролитических конденсаторов. Усугубляется это тем, что воздух проходит через компьютерный блок питания уже предварительно нагретый элементами системного блока. Рекомендую вовремя чистить блок питания от пыли изнутри и за одно проверять, нет ли вздутых электролитов внутри.

    Вышедшие из строя, вздувшиеся электролиты

    Рис. 6 Вышедшие из строя электролитические конденсаторы — вздувшиеся верхушки корпусов.

    В случае обнаружения последних, меняем на новые и радуемся, что все осталось целым. Это же относится и ко всему системному блоку.

    Внимание — бракованные конденсаторы CapXon! Электролитические конденсаторы фирмы CapXon серии LZ 105 o C (устанавливаемые в материнские платы и компьютерные блоки питания), пролежавшие в отапливаемом жилом помещении от 1 до 6-ти месяцев вздулись, из некоторых выступил электролит (рис. 7). Электролиты в употреблении не были, находились на хранении, как и остальные детали мастерской. Измеренное эквивалентное последовательное сопротивление (ESR) оказалось в среднем на 2 порядка! выше предельного для этой серии.

    Бракованные, вздувшиеся электролиты CapXon

    Рис. 7 Бракованные электролитические конденсаторы CapXon — вздувшиеся верхушки корпусов и завышенное эквивалентное последовательное сопротивление (ESR).

    Интересное замечание: вероятно ввиду низкого качества конденсаторы CapXon не встречаются в аппаратуре высокой надежности: блоках питания серверов, роутеров, медицинской аппаратуры и т. д. Исходя из этого в нашей мастерской в поступающей аппаратуре с электролитами CapXon поступают как с заведомо неисправными — сразу меняют на другие.

    Источник

    Самодельный блок питания для компьютера

    Компьютерные блоки питания – это очень точные и функциональные устройства. Они имеют низкую погрешность в питании устройств, входящих в состав персонального компьютера (ПК) – не более 5%. И достаточную мощность – от 250 Вт и выше.

    Часто компьютерные БП используют не по назначению:

    • Они могут питать сторонние устройства.
    • БП изрядно модифицируют (улучшают охлаждение, изменяют выходные напряжения и т.п.) для получения заданного уровня тока.
    • Разбирают на запчасти для сборки собственных БП.
    • И т.д.

    Но самая безумная затея – сделать блок питания ПК своими руками!

    • Во-первых, компьютерный БП – это не просто источник нескольких уровней напряжений и тока. Это устройство с обратной связью. Имеется специальный контроллер, отвечающий за управление включением и отключением питания, при особом сигнале БП переходит в дежурный режим и т.д.
    • Во-вторых, в домашних условиях сложно достичь правильной компоновки элементов и уместить схему в заданные габариты. А значит, БП с большой вероятностью будет размещён вне системного блока.
    • В-третьих, даже имея на руках детальную схему БП, её будет сложно собрать своими руками – высокая плотность элементов повышает риск ошибки, не все детали имеются в доступе (скорее всего часть из них будет снята с тех же самых БП, например, с вышедших из строя).
    • В-четвёртых, ошибка в сборке может обойтись очень дорого – стоимость сгоревшей материнской платы, как и большинства подключаемых к БП устройств (процессор, жёсткий диск и т.д.), намного выше стоимости нового БП.

    Даже простейший подсчёт затрат времени и денег на закупку компонентов говорит о том, что экономического эффекта от сборки БП для ПК своими руками – нет.

    Проще всего приобрести новый БП, скомпоновать несколько (если необходимо увеличить мощность) или модифицировать имеющийся (например, залив его маслом и поместив в специальный корпус для снижения шумности, для понижения температуры в корпусе и т.п. – что актуально для оверлокеров).

    Если всё вышеизложенное вас не останавливает, а цель – исследование своих возможностей или детальное изучение БП, то материал ниже – для вас.

    Схемы компьютерных БП

    Рис. 1. Принципиальная схема БП ПК

    Итак, первое, что необходимо усвоить при проектировании собственного БП – на выходе должно быть несколько уровней напряжений:

    Комбинация +12 и -12 В может питать цепи напряжением в 24 В.

    К примеру, блок питания мощностью 350 Вт обеспечивает следующую силу тока на каналах питания:

    +5 В – до 32 А (до 160 Вт);

    +12 В – до 16А (до 192 Вт);

    Если попытаться измерить показатели напряжения на реальном БП без нагрузки, они могут сильно отличаться от заявленных. Кроме того, некоторые блоки питания способны блокировать напряжение, если нагрузка отключена.

    Наиболее простой в сборке можно назвать блоки ATX (старого образца с минимумом микроконтроллеров). Типовая схема выглядит следующим образом.

    Рис. 2. Типовая схема блока ATX

    Рис. 3. Типовая схема блока ATX

    Ядром её служит таймер, выполняющий роль генератора частоты.

    Чтобы был понятен принцип работы с напряжением, можно изучить следующую схему.

    Рис. 4. Схема принципа работы БП

    Она соответствует большинству импульсных источников питания. Переменное напряжение преобразовывается в постоянное, затем генератор импульсов преобразует ток в переменный с высокой частотой. Теперь на базе ВЧ сигнала легко сформировать нужное постоянное напряжение заданного уровня или даже нескольких уровней.

    Такой подход позволяет избежать применения тяжёлых и габаритных трансформаторов, но имеет свои нюансы:

    • Возможны ВЧ-помехи (поэтому системный блок ПК включают в сеть через сетевой фильтр);
    • Для БП опасна работа без нагрузки.

    Если упомянутую блок-схему наложить на принципиальную схему БП АТХ, то получится следующее.

    Выше обозначены основные блоки (легко соотносятся с блок-схемой, обозначенной выше):

    1. Выпрямитель сетевого напряжения

    2. Генератор частоты

    4. Трансформаторный блок

    5. Блок выпрямления тока

    Из-за того, что первичное выпрямление сетевого напряжения с диодным мостом и конденсатором в роли простейшего фильтра обеспечивало пульсирующий ток, этот подход был пересмотрен.

    Более качественный сигнал формируется с применением активного корректора мощности.

    Новые поколения компьютерных БП собираются по следующим схемам.

    Рис. 6. Схема БП ПК

    Они получаются ещё компактнее и надёжнее предшественников – ATX.

    Даже собрав БП своими руками, вы не сможете просто так запитать все необходимые узлы и устройства.

    Ниже обозначены основные интерфейсы для подачи питания.

    Рис. 7. Основные интерфейсы для подачи питания.

    Обратите внимание на расположение защёлок, они выступают в роли ключа.

    Для удобства сборщиков все провода имеют специфичную маркировку:

    • +12В – жёлтый цвет;
    • +5В – красный;
    • +3,3 – оранжевый;
    • Общий – чёрный.

    -12 и -5 В – могут отличаться в зависимости от производителя БП.

    Источник

    Мощности блоков питания для компьютеров своими руками

    C ежегодным апгрейдом процессора, материнки, памяти, видео, я давно смирился, как с неизбежным. Но апгрейд блока питания меня почему-то здорово нервирует. Если железо прогрессирует кардинально, то в схемотехнике блока питания таких принципиальных изменений практически нет. Ну, транс побольше, провода на дросселях потолще, диодные сборки помощнее, конденсаторы. Неужели нельзя купить блок питания помощнее, так сказать на вырост, и жить хотя бы пару лет спокойно. Не задумываясь о такой относительно простой вещи, как качественное электропитание.

    Казалось чего бы проще, купи блок питания самой большой мощности, какую найдешь, и наслаждайся спокойной жизнью. Но не тут то было. Почему-то все работники компьютерных фирм уверены, что 250-ти ваттного блока питания хватит вам с избытком. И, что бесит больше всего, начинают безапелляционно поучать и безосновательно доказывать свою правоту. Тогда на это резонно замечаешь, что знаешь, чего хочешь и готов за это платить и надо побыстрее достать то, чего спрашивают и заработать законную прибыль, а не злить незнакомого человека своими бессмысленными, ничем не подкрепленными уговорами. Но это только первое препятствие. Идем дальше.

    Допустим, вы все же нашли мощный блок питания, и тут вы видите, например, такую запись в прайсе

    • Power Man PRO HPC 420W – 59 уе
    • Power Man PRO HPC 520W – 123 уе

    При разнице в 100 ватт цена выросла вдвое. А уж если брать с запасом, то нужно 650 или больше. Сколько это будет стоить? И это еще не все!

    реклама

    В подавляющем большинстве современных блоков питания используется микросхема SG6105. А схема включения ее, имеет одну очень неприятную особенность – она не стабилизирует напряжения 5 и 12 вольт, а на ее вход подается среднее значение этих двух напряжений, полученное с резисторного делителя. И стабилизирует она это среднее значение. Из-за этой особенности часто происходит такое явление, как «перекос напряжений». Ранее использовали микросхемыTL494, MB3759, KA7500. Они имеют ту же особенность. Приведу цитату из статьи господина Коробейникова.

    «. Перекос напряжений возникает из-за неравномерного распределения нагрузки по шинам +12 и +5 Вольт. Например, процессор запитан от шины +5В, а на шине +12 висит жёсткий диск и CD привод. Нагрузка на +5В во много раз превышает нагрузку на +12В. 5 вольт проваливается. Микросхема увеличивает duty cycle и +5В приподнимается, но ещё сильнее увеличивается +12 – там меньше нагрузка. Мы получаем типичный перекос напряжений. «

    На многих современных материнских платах процессор питается от 12 вольт, тогда происходит перекос наоборот, 12 вольт понижается, а 5 повышается.

    И если в номинальном режиме компьютер нормально работает, то при разгоне потребляемая процессором мощность увеличивается, перекос усиливается, напряжение уменьшается, срабатывает защита блока питания от понижения напряжения и компьютер отключается. Если не происходит отключения, то все равно пониженное напряжение не способствует хорошему разгону.

    Так, например, было у меня. Даже написал на эту тему заметку – «Лампочка оверклокера» Тогда у меня в системнике работали два блока питания – Samsung 250 W, Power Master 350 W. И я наивно верил, то 600 ватт более чем достаточно. Достаточно может и достаточно, но из-за перекоса все эти ватты бесполезны. Этот эффект я по незнанию усилил тем, что от Power Master подключил материнку, а от Samsung винт, дисководы и т.д. То есть вышло – с одного блока питания берется, в основном 5 вольт, с другого 12. А другие линии «в воздухе», что и усилило эффект «перекоса».

    После этого я приобрел 480 ваттный блок питания Euro case. Из-за своего пристрастия к тишине, переделал его в безвентиляторный, о чем тоже писал на страницах сайта. Но и в этом блоке стояла SG6105. При его тестировании я тоже столкнулся с явлением «перекоса напряжений». Только что приобретенный блок питания непригоден для разгона!

    И это еще не все! Мне все хотелось приобрести второй компьютер, а старый оставить «для опытов», но элементарно «давила жаба». Недавно я эту зверюгу все же уговорил и приобрел железо для второго компа. Это конечно отдельная тема, но я для него купил блок питания – PowerMan Pro 420 W. Решил проверить его на предмет «перекоса». А так как новая мать питает процессор по шине 12 вольт, то по ней я и проверил. Как? Узнаете, если дочитаете статью до конца. А пока скажу, что при нагрузке 10 ампер, двенадцать вольт провалилось до 11.55. Стандарт допускает отклонение напряжений плюс-минус 5 процентов. Пять процентов от 12 это 0.6 вольта. Иными словами при токе 10 ампер напряжение упало почти до предельно допустимой отметки! А 10 ампер соответствует 120-ти ваттам потребления процессора, что при разгоне вполне реально. В паспорте к этому блоку по шине 12 вольт заявлен ток 18 ампер. Я думаю, не видать мне этих ампер, так как от «перекоса» блок питания выключится гораздо раньше.

    Итого – четыре блока питания за два года. И надо брать пятый, шестой, седьмой? Нет, хватит. Надоело платить за то, что заранее не нравится. Что мне мешает самому сделать киловаттный блок питания и пожить спокойно пару лет, с уверенностью в качестве и количестве питания своего любимца. К тому же я затеял изготовление нового корпуса. Корпус я начал делать преогромный и блок питания, нестандартного размера, должен поместиться там без проблем. Но и обладателям стандартных корпусов может пригодиться такое решение. Всегда можно сделать внешний блок питания, тем более прецеденты уже есть. Кажется, Zalman выпустил внешний блок питания.

    Читайте также:  Зарядное устройство из БП ноутбука

    Конечно, делать блок питания такой мощности «с нуля» — сложно, долго, да и хлопотно. Поэтому и появилась идея собрать один блок из двух фабричных. Тем более они уже есть и, как выяснилось, в теперешнем виде непригодны для разгона. На эту мысль меня натолкнула все та же статья господина Коробейникова.

    «. Для введения раздельной стабилизации нужен второй трансформатор и вторая микросхема ШИМ, так и делается в серьёзных и дорогих серверных блоках. «

    реклама

    В компьютерном блоке питания существует три сильноточные линии с напряжением 5, 12 и 3.3 вольта. У меня есть два стандартных блока питания, пусть один из них вырабатывает 5 вольт, а другой, помощнее, 12 и все остальные. Напряжение 3.3 вольта стабилизируется отдельно и явления перекоса не вызывает. Линии вырабатывающие -5, -12 и т.д. – маломощны и эти напряжения можно взять с любого блока. А для осуществления этого мероприятия, использовать принцип, изложенный в той же статье г. Коробейникова – отключать ненужное напряжение от микросхемы, а нужное подрегулировать. То есть, теперь SG6105 будет стабилизировать только одно напряжение и, следовательно, явление «перекоса напряжений» не будет.

    Так же облегчается режим работы каждого блока питания. Если посмотреть силовую часть, типовой схемы блоков питания (Рис.2), то видно, что обмотки 12, 5 и 3.3 вольта представляют собой одну общую обмотку с отводами. И если с такого транса брать не сразу все три, а только одно напряжение, то мощность трансформатора останется прежней, но на одно напряжение, а не на три.

    К примеру, блок по линиям 12, 5, 3.3 вольта выдавал 250 ватт, то теперь практически эти же 250 ватт мы получим по линии, например, 5 вольт. Если раньше общая мощность делилась между тремя линиями, то теперь всю мощность можно получить на одной линии. Но на практике для этого нужно заменить диодные сборки на используемой линии на более мощные. Или включить параллельно дополнительные сборки, взятые с другого блока, на котором эта линия использоваться не будет. Так же максимальный ток будет ограничивать сечение провода дросселя. Может сработать и защита блока питания от перегрузки по мощности (хотя этот параметр можно подрегулировать). Так что полностью утроенную мощность мы не получим, но прибавка будет, да и греться блоки будут гораздо меньше. Можно, конечно, перемотать дроссель проводом большего сечения. Но об этом позже.

    Перед тем, как приступить к описанию модификации, нужно сказать несколько слов. Очень непросто писать о переделках электронного оборудования. Не все читатели разбираются в электронике, не каждый читает принципиальные схемы. Но в то же время есть читатели, занимающиеся электроникой профессионально. Как ни напишешь – окажется, что для кого-то непонятно, а для кого-то раздражающе примитивно. Я все же попытаюсь написать так, что бы было понятно подавляющему большинству. А специалисты, думаю, меня простят.

    Так же необходимо сказать, что все переделки оборудования вы производите на свой страх и риск. Любые модификации лишают вас гарантии. И естественно, автор, за любые последствия ответственности не несет. Не лишним будет сказать, что человек, берущийся за такую модификацию, должен быть уверен в своих силах, и иметь соответствующий инструмент. Данная модификация выполнима на блоках питания собранных на основе микросхемы SG6105 и немного устаревших TL494, MB3759, KA7500.

    Для начала пришлось поискать datasheet на микросхему SG6105 – это оказалось не так уж сложно. Привожу из datasheet нумерацию ног микросхемы и типовую схему включения.

    Рис. 2. Типовая схема включения.

    Рис. 3. Схема включения SG6105

    Опишу сначала общий принцип модернизации. Сначала модернизация блоков на SG6105. Нас интересуют выводы 17(IN) и 16(COMP). К этим выводам микросхемы и подключен резисторный делитель R91, R94, R97 и подстроечный резистор VR3. На одном блоке отключаем напряжение 5 вольт, для этого выпаиваем резистор R91. Теперь подстраиваем величину напряжения 12 вольт резистором R94 грубо, а переменным резистором VR3 точно. На другом блоке наоборот, отключаем 12 вольт, для этого выпаиваем резистор R94. И подстраиваем величину напряжения 5 вольт резистором R91 грубо, а переменным резистором VR3 точно.

    Провода PC – ON всех блоков питания соединяются между собой и подпаиваются к 20-ти контактному разъему, который потом подключаем к материнке. С проводом PG сложнее. Я взял этот сигнал с более мощного блока питания. В дальнейшем можно реализовать несколько более сложных вариантов.

    Рис. 4. Схема распайки разъема

    Теперь об особенностях модернизации блоков на основе микросхемы TL494, MB3759, KA7500. В этом случае сигнал обратной связи с выходных выпрямителей напряжений 5 и 12 вольт подается на вывод 1 микросхемы. Поступаем немного по-другому – перерезаем дорожку печатной платы около вывода 1. Другими словами отключаем вывод 1 от остальной схемы. И на этот вывод подаем нужное нам напряжение через резисторный делитель.

    Рис 5. Схема для микросхем TL494, MB3759, KA7500

    В этом случае номиналы резисторов одинаковы и для стабилизации 5 вольт и для 12. Если вы решили использовать блок питания для получения 5-ти вольт, то резисторный делитель подключаете к выходу 5В. Если для 12, то к 12.

    реклама

    Наверно хватит теории и пора приступать к делу. Сначала надо определиться с измерительными приборами. Для измерения напряжений я применю одни из самых дешевых мультиметров DT838. Точность измерения напряжения у них 0.5 процента, что вполне приемлемо. Для измерения тока использую стрелочный амперметр. Токи нужно мерить большие, поэтому придется самому изготовить амперметр из стрелочной измерительной головки и самодельного шунта. Готовый амперметр с фабричным шунтом приемлемого размера я найти не смог. Нашел амперметр на 3 ампера, разобрал его. Вытащил из него шунт. Получился микроамперметр. Дальше была небольшая сложность. Для изготовления шунта и калибровки амперметра, сделанного из микроамперметра, был нужен образцовый амперметр, способный мерить ток в пределах 15-20 ампер. Для этих целей можно было бы применить токовые клещи, но у меня таковых не оказалось. Пришлось искать выход. Выход я нашел самый простой, конечно, не очень точный, но вполне. Шунт я вырезал из стального листа толщиной 1мм, шириной 4мм и длиной 150 мм. К блоку питания через этот шунт подключил 6 лампочек 12V, 20W. По закону Ома через них потек ток равный 10 амперам.

    Один провод от микроамперметра соединил с концом шунта, а второй двигал по шунту, пока стрелка прибора не показала 7 делений. До 10 делений не хватило длины шунта. Можно было подрезать шунт потоньше, но из-за нехватки времени решил оставить, как есть. Теперь 7 делений этой шкалы соответствуют 10 амперам.

    Фото 1 Бюджетный стенд для подбора шунта.

    Фото 2. Стенд с включенными 6-ю лампочками 12вольт 20 ватт.

    реклама

    На последней фотографии видно, как просело напряжение 12 вольт при токе 10 ампер. Блок питания PowerMan Pro 420 W. Минус 11.55 показывает из-за того, что я перепутал полярность щупов. На самом деле конечно плюс 11.55. Этот же стенд я буду использовать как нагрузку для регулировки готового блока питания.

    Новый блок питания я буду делать на основе PowerMaster 350 W, он будет вырабатывать 5 вольт. Согласно наклейке на нем, он по этой линии должен давать 35 ампер. И PowerMan Pro 420 W. С него я буду брать все остальные напряжения.

    В этой статье я покажу общий принцип модернизации. В дальнейшем я планирую переделать полученный блок питания в пассивный. Возможно, перемотаю дроссели проводом большего сечения. Доработаю соединительные кабели на предмет уменьшения наводок и пульсаций. Сделаю мониторинг токов и напряжений. И возможно многое другое. Но это в будущем. Все это описывать в данной статье я не буду. Цель статьи – доказать возможность получения мощного блока питания, путем модернизации двух-трех блоков меньшей мощности.

    Немного о технике безопасности. Все перепайки производятся, естественно, при выключенном блоке. После каждого выключения блока, перед дальнейшими работами, разряжайте большие конденсаторы. На них присутствует напряжение 220 вольт, и заряд они накапливают очень приличный. Не смертельный, но крайне неприятный. Электрический ожог заживает долго.

    Начну с PowerMaster. Разбираю блок, вынимаю плату, отрезаю лишние провода.

    реклама

    Фото 3. Блок PowerMaster 350 W

    Нахожу микросхему ШИМ, она оказалась TL494. Нахожу вывод 1, осторожно перерезаю печатный проводник и подпаиваю к выводу 1 новый резисторный делитель (см. Рис5). Подпаиваю вход резисторного делителя к пятивольтовому выходу блока питания (обычно это красные провода). Еще раз проверяю правильность монтажа, это никогда не бывает лишним. Подключаю модернизированный блок к своему бюджетному стенду. На всякий случай, спрятавшись за стул, включаю. Взрыва не произошло и это даже вызвало легкое разочарование. Для запуска блока соединяю провод PS ON с общим проводом. Блок включается, лампочки загораются. Первая победа.

    Переменным резистором R1 на малой нагрузке блока питания (две лампочки по 12V, 20W и спот 35W) выставляю выходное напряжение 5 вольт. Напряжение замеряю непосредственно на выходном разъеме.

    Фотоаппарат у меня не самый лучший, мелкие детали не видит, поэтому прошу прощения за качество снимков.

    реклама

    Блок питания на непродолжительное время можно включать без вентилятора. Но нужно следить за температурой радиаторов. Будьте осторожны, на радиаторах некоторых моделей блоков питания присутствует напряжение, иногда высокое.

    Не выключая блок, начинаю подключать дополнительную нагрузку – лампочки. Напряжение не меняется. Блок стабилизирует хорошо.

    На этой фотографии я подключил к блоку все лампочки, какие были в наличии – 6 ламп по 20w, две по 75 w, и спот 35w. Ток, текущий через них по показаниям амперметра в пределах 20 ампер. Никакого «проседания», никаких «перекосов»! Полдела сделано.

    Теперь берусь за PowerMan Pro 420 W. Так же разбираю его.

    реклама

    Нахожу на плате микросхему SG6105. За тем отыскиваю нужные выводы.

    Принципиальная схема, приведенная в статье г. Коробейникова, соответствует моему блоку, нумерация и номиналы резисторов те же. Для отключения 5-ти вольт выпаиваю резистор R40 и R41. Вместо R41 впаиваю два переменных резистора соединенных последовательно. Номинал 47 кОм. Это для грубой регулировки напряжения 12 вольт. Для точной регулировки используется резистор VR1 на плате блока питания

    Рис 6. Фрагмент схемы блока питания PowerMan

    реклама

    Опять достаю свой примитивный стенд и подключаю к нему блок питания. Сначала подключаю минимальную нагрузку – спот 35W.

    Включаю, подстраиваю напряжение. Затем, не выключая блок питания, подключаю дополнительные лампочки. Напряжение не меняется. Блок прекрасно работает. По показаниям амперметра ток достигает 18 ампер и никакого «проседания» напряжения.

    Второй этап закончен. Теперь осталось проверить, как будут работать блоки в паре. Перекусываю провода красного цвета идущие от PowerMan к разъему и молексам, изолирую их. А к разъему и молексам подпаиваю пятивольтовый провод от PowerMaster 350 W, так же соединяю общие провода обоих блоков. Провода Power On блоков питания объединяю. PG беру с PowerMan. И подключаю этот гибрид к своему системному блоку. На вид он несколько странен и если кому-то захочется узнать о нем поподробнее, прошу на ПС.

    • Мать Epox KDA-J
    • Процессор Athlon 64 3000
    • Память Digma DDR500, две планки по 512Mb
    • Винт Samsung 160Gb
    • Видео GeForce 5950
    • DVD RW NEC 3500

    Включаю, все прекрасно работает.

    Опыт удался. Теперь можно приступать к дальнейшей модернизации «объединенного блока питания». Перевод его на пассивное охлаждение. На фотографии видна панель с приборами – это все будет подключено к данному блоку. Стрелочные приборы – мониторинг токов, цифровые приборы в круглых отверстиях под стрелочными – мониторинг напряжений. Ну и тахометр, и все такое, об этом я уже писал на своей персоналке. Но это в дальнейшем.

    Влияние «объединенного блока питания» на дальнейший разгон я не проверял. Доделаю, тогда и проверю. Процессор уже разогнан до 2.6 гигагерц по шине, при напряжении на проце 1.7 вольта. Гнал я его на безвентиляторном блоке питания, но при таком разгоне 12 вольт на нем проседали до 11.6 вольта. А гибрид выдает ровно 12. Так что, возможно, еще немного мегагерц я из него выжму. Но это будет другая история.

    Перечень используемой литературы:

    1. datasheet на микросхему SG6105
    2. Статья г. Коробейникова
    3. Журнал «Радио». – 2002.-№ 5, 6, 7. «Схемотехника блоков питания персональных компьютеров» авт. Р. Александров

    Ждём Ваших комментариев в специально созданной ветке конференции.

    Источник