Меню

Модуль зарядного устройства для литиевых аккумуляторов

TP4056 схема подключения модуля зарядки

Модуль зарядки TP4056 с защитой аккумуляторов от перезарядки, перегрузки и короткого замыкания. TP4056 со встроенным термодатчиком позволяет заряжать аккумулятор током до 1000 мА, сила тока регулируется заменой резистора Rprog на модуле. Рассмотрим, как правильно включить модуль зарядки аккумуляторов с нагрузкой к микроконтроллеру Ардуино для бесперебойного питания платы.

TP4056 модуль зарядки с защитой li-ion аккумуляторов

Контроллер TP4056 является улучшенной модификацией чипа TP4054. Имеет защиту от короткого замыкания, автоматически завершает зарядку аккумуляторов при напряжении на выходе 4,2 Вольт и снижении тока заряда до 1/10 от заданной величины. При зарядке аккумулятора на плате включается красный светодиод, когда батарея полностью заряжена включается встроенный зеленый светодиод.

Технические характеристики TP4056

  • Контроллер: TP4056 для зашиты переразряда/перезаряда аккумулятора;
  • Режим зарядки: линейная 1%;
  • Ток зарядки: до 1 Ампер (настраивается);
  • Точность зарядки: 1.5%;
  • Входное напряжение: 4.5 — 5,5 Вольт;
  • Напряжение полного заряда: 4,2 Вольт;
  • Защита от переполюсовки: нет;
  • Защита от перезаряда: 4,30 ± 0,050 Вольт;
  • Защита от переразряда: 2,40 ± 0,100 Вольт;
  • Входной разъем: mini USB и контакты для проводов;
  • Размеры платы: 25 × 17 × 4 мм.

График зарядки аккумуляторов от TP4056 изображен выше. Процесс состоит из нескольких этапов. Сначала идет зарядка током 1/10 от запрограммированного резистором Rprog (по умолчанию 1,2 кОм) до уровня 2,9 Вольт. Затем идет зарядка максимальным током, а при достижении заряда 4,2 Вольта происходит стабилизация напряжения. При достижении тока 1/10 от заданного значения — зарядка отключается.

Резистор (кОм) Ток заряда (мА)
30
20
10
5
4
3
2
1.66
1.5
1.33
1.2
50
70
130
250
300
400
580
690
780
900
1000

Чтобы подобрать оптимальный ток зарядки аккумулятора, необходимо правильно подобрать резистор Rprog, согласно таблице, размещенной выше. Разберем простой пример: имеется аккумулятор емкостью 1700 Ампер/часов. Чтобы узнать необходимый ток зарядки, следует емкость разделить на 2, то есть: 1700 / 2 = 850 мА. Поэтому необходимо заменить резистор Rprog на резистор с сопротивлением 1,33 кОм.

TP4056 схема подключения с нагрузкой

На картинке выше, продемонстрировано использование модуля зарядки при подключении к нагрузке с одним аккумулятором 18650. Обратите внимание, что при отсутствии внешнего источника питания, подключенного к USB-порту или контактам IN, на пины OUT начнет поступать питание от аккумулятора. На выходе будет напряжение 3,7 Вольт, но это можно исправить, используя повышающий преобразователь.

TP4056 подключение аккумуляторов 18650

На схеме выше показано, как сделать с помощью модуля зарядки источник бесперебойного питания для микроконтроллера Arduino Uno или power bank. Но для этого следует подключить к модулю TP4056 несколько аккумуляторов, чтобы увеличить емкость батареи и более длительное время работы устройства. Также потребуется любой модуль, повышающий постоянное напряжение до 5 Вольт.

TP4056 схема подключения к Ардуино плате

Как мы уже говорили, данную схему повер банка можно использовать в качестве источника бесперебойного питания для Arduino Nano или Uno. Для этого к повышающему модулю следует подключить USB шнур. Черный провод USB кабеля припаивается к контакту модуля VOUT-, а красный провод к VOUT+. В качестве питания для модуля зарядки можно использовать солнечные панели или блок питания.

Заключение. Мы рассмотрели, как подключить модуль зарядки TP4056 и аккумуляторы 18650 с защитой от перезарядки и переразряда, чтобы сделать power bank своими руками. Теперь вы знаете, как правильно подключить к TP4056 к Arduino для бесперебойной работы устройств на микроконтроллере. Любые вопросы по рассмотренной теме вы можете оставить ниже в комментариях к этой записи.

Источник



Умный контроллер заряда литиевых аккумуляторов — модуль на tp4056

модули заряда литиевых аккумуляторов

Для долгой и счастливой жизни литиевого аккумулятора очень важно правильно его заряжать. Не менее важно контролировать так же и разряд. На наше спасение, уже давно придумали контроллер заряда литиевых аккумуляторов в виде готового модуля. Но можно ли ему доверять, сейчас мы это и проверим.

Перед прочтением рекомендую посмотреть мой ролик про модули заряда литиевых аккумуляторов.

  1. Как заряжать литиевые аккумуляторы
  2. Микросхемы контроля заряда литиевых аккумуляторов
  3. Модуль контроля заряда Li-ion аккумулятора
  4. Как регулировать ток заряда
  5. Измерение характеристик модуля
  6. Измерения заряда аккумулятора
  7. Умный модуль бережет аккумулятор
  8. Контроль разряда аккумулятора
  9. Как греется модуль
  10. Где купить модуль заряда Li акумулятора?
  11. Заключение

Как заряжать литиевые аккумуляторы

Вся фишка зарядки литиевых аккумуляторов кроется в том, что ни ток заряда ни напряжение не должен быть постоянными. Процесс заряда должен проходить по определенным фазам:

  1. При полной разрядке аккумулятора (
  2. По мере накопления заряда, т.е. повышении напряжения аккумулятора, ток заряда должен уменьшаться.
  3. При достижении 90% от полного заряда, ток заряда должен снизиться до уровня порядка 0,1С. Как только напряжение на аккумуляторе достигнет 4.1-4.15 В, процесс заряда должен прекратиться.

Соблюдение этих правил заряда литиевого аккумулятора обеспечит ему продолжительный срок службы. Разрядка литиевого аккумулятора ниже 3 вольт, а так же его регулярная перезарядка даже на 0.1 вольта значительно сокращает емкость аккумулятора.

Микросхемы контроля заряда литиевых аккумуляторов

Сегодня существуют микросхемы, представляющие собой готовый контроллер заряда литиевых аккумуляторов. Одной из таких микросхем является TP4056 ( скачать даташит ). Схема контроллера заряда литиевых аккумуляторов на TP4056 выглядит следующим образом:

схема зарядки на tp4056

Однако, если вам вздумалось ее реализовать, то спешу вас огорчить. Потраченные усилия, время и деньги во много много раз превысят стоимость готового модуля, построенного по точно такой же схеме и даже усиленного более мощными транзисторами на выходе.

Модуль контроля заряда Li-ion аккумулятора

Готовый модуль контроля заряда литиевого аккумулятора можно купить всего за 30 центов .

Обращаю ваше внимание, что такие модули бывать не только с контроллером заряда аккумулятора. Есть так же версии с контролем разряда аккумулятора.

модули зарядки li ion аккумуляторов

Картинка демонстрирует все четыре варианта подобных модулей. Два левых модуля полностью аналогичны двум правым модулям, разница заключается только в установленном разъеме. А вот между собой, два левых модуля, как и два правых отличаются возможностью контроля разряда аккумулятора.

Если на модуле помимо контактов для аккумулятора В+ и В- также присутствуют контакты OUT+и OUT- то это значит, что модуль умеет контролировать разряд аккумулятора, а подключение нагрузки к аккумулятору происходит через модуль.

Не стоит бояться что версия с контроллером разряда посадит вам аккумулятор. Измерения показали, что потребление тока самим модулем составляет всего около 5 микро Ампер. Что меня даже немного удивило.

Как регулировать ток заряда

В исходном состоянии модуль может выдать максимальный ток заряда до 1 Ампера. Если нужно больше, то смотрите мой видосик в начале статьи.

Если же емкость аккумулятора меньше 1000мА*ч, то максимальный ток заряда лучше снизить до значения, равного емкости аккумулятора или еще ниже, особенно если аккумулятор не очень новый. Для этого стоит заменить резистор RPROG на подходящий номинал.

установка тока заряда литиевого аккумулятора

Измерение характеристик модуля

Мерить мы будем следующее:

  1. Процесс зарядки — посмотрим, как меняется ток заряда от напряжения на аккумуляторе.
  2. Разрядку , а точнее умение модуля продолжительно отдавать ток в нагрузку, а так же умение отрубать аккумулятор по достижении порога разряда.

Для этих целей нам понадобится вольтметр и амперметр. Но я рожа ленивая, да и мерить вручную в наш век — мартышкин труд. Поэтому на помощь был позван микроконтроллер PIC18F4550. Он умеет общаться с компом по USB и обладает 10-битным АЦП на борту.

Амперметр и вольтметр далее изображены условно. И вольтметр и амперметр реализованы на дифференциальных усилителях. Для измерения тока использован низкоомный резистор, разность напряжений с выводов которого и снимается дифференциальным усилителем. Такому методу измерения тока недавно была посвящена отдельная статья.

измерение модуля зарядки li ion

С выходов диф. усилителей сигнал поступает на АЦП микроконтроллера. Шаг АЦП по напряжению составляет около 5 мВ, чего для таких измерений более чем достаточно. Чтобы максимально снизить погрешность, данные приходящие за 10 секунд усреднялись ( по 200 приходящих значений).

Все пытки проводились с участием аккумулятора Sony VTC6 формата 18650. Этот аккумулятор обладает емкостью 3000 мА*ч. Максимальный выходной ток аккумулятора может достигать 30 А.

Измерения заряда аккумулятора

Для изучения процесса заряда аккумулятора была реализована следующая измерительная схема:

схема измерения заряда li ion аккумулятора

Полученный с ее помощью график, представлен на следующей картинке. Для удобства синим обозначена зависимость тока, а красным — зависимость напряжения от времени. При этом время указанно в секундах.

график заряда li ion аккумулятора

6000 секунд соответствуют 100 минутам или же в более привычном виде это 1 час 40 минут. Соответственно полная зарядка аккумулятора заняла около 6 часов. При емкости аккумулятора в 3000 мАч, средний ток заряда можно считать равным 500мА.

На графике отлично видны все три описанные выше фазы зарядки. Схемка отрабатывает все как и положено. Между разными экземплярами модулей присутствует небольшой разброс конечного напряжения, но он не критичен.

Стоит отметить, что любое измерение физической величины это лишь попытка приближения к истинному значению. Не стоит обращать внимание на мелкие зубчики, их природа может быть вызвана как неравномерностью АЦП так и нелинейностью модуля. Что совсем не критично.

В любом случае получившаяся зависимость отлично удовлетворяет всем правилам заряда аккумулятора.

Умный модуль бережет аккумулятор

Я не зря назвал этот модуль умным. Если внимательно присмотреться к моменту подачи питания на модуль, то можно увидеть небольшую ступеньку на зависимости тока. Вот так она выглядит крупным планом:

график заряда li ion аккумулятора

Речь идет о ступеньке между 500 и 600 секундами на уровне 100 мА. Эта ступенька присутствует если аккумулятор разряжен ниже 3 вольт.

Модуль бережно относится к аккумулятору. Сначала он доводит напряжение на аккумуляторе примерное до 3 вольт током в 100 мА. А уже затем начинает кочегарить через аккумулятор 1 ампер. Ну или ток, который был установлен резистором RPROG.

Контроль разряда аккумулятора

Для изучения выходных характеристик модуля схема была несколько изменена. В качестве нагрузки был установлен переменный резистор, включенный последовательно с амперметром к выходным контактам модуля.

схема измерения разряда li ion аккумулятора

Сопротивление нагрузочного резистора было установлено так, что начальный ток разряда составлял около 1.15 А. Т.к. нагрузка была постоянной, соответственно ток в выходной цепи падал с падением напряжения на аккумуляторе.

график разряда li ion аккумулятора

Как видно из графика, модуль благополучно отрубил нагрузку от аккумулятора в районе 5000 сек. А это значит, что модуль отдавал ток порядка 1 ампера в течении полутора часов и не загнулся. Отличный результат)

Рост напряжения на аккумуляторе, после отключения нагрузки, вызван химическим восстановлением аккумулятора после столь длительной отдачи приличного тока.

Если аккумулятор был полностью разряжен и модуль его отключил, то включение произойдет, при подключении зарядного устройства, как только напряжение на аккумуляторе достигнет уровня в 2.9 — 3 вольта.

Как греется модуль

В процессе зарядки, когда ток составляет 1 ампер, модуль прилично греется. Стоит учитывать этот факт при использовании модуля в закрытом устройстве. Так, на открытом воздухе температура модуля достигала значений более 70 градусов (по термопаре).

нагрев модуля при зарядке акумулятора

В случае установки модуля в закрытый корпус желательно снизить максимальный ток заряда до 500-700 мА. Но на терма-клей все же не стоит крепить.

У самого же модуля предусмотрена защита от перегрева. Так при перегреве модуль начинает ограничивать выходной ток. Так что от перегрева он скорее всего не сдохнет. Но не стоит полностью полагаться на защиту))

Где купить модуль заряда Li акумулятора?

Я не могу ручаться за все подобные модул. Их производством не брезгует каждый уважающий себя житель поднебесной. Показанные модули заказывались уже не первый раз у конкретного продавца. Которого советую и вам.

Покупать такие модули поштучно не выгодно — продавцы начинают накручивать цену и за модуль и за доставку. Удобнее и дешевле закупать сразу по 5 или 10 штук даже если требуется 1-2. Очень удобно, когда где-то в шкафу лежит кучка таких модулей и при необходимости можно быстро сообразить из них зарядку. Вот ссылки на разные лоты проверенного магазина:

  • 5 шт. micro-USB– 1.57$
  • 5 шт. mini-USB– 1.57$
  • 10 шт. micro-USB– 2.61$
  • 10 шт. mini-USB2.61$

1.57$ за 5 штук, и тем более 2.61$ за 10 штук — это копейки. Во многих магазинах радиодеталей с вас попросят аналогичную сумму за каждый такой модуль.

цены от 16 сентября 2020

Да, ссылки реферальные, но покупая по ним Вы абсолютно ничего не теряете (а теперь даже кэшбэк с них не дают). Зато этим Вы говорите мне спасибо за проделанную работу и помогаете копеечкой моему проекту. За это спасибо и Вам.

Заключение

Честно говоря я и сам не ожидал таких результатов, но модули зарядки литиевых аккумуляторов отлично себя показали. И я однозначно рекомендую к покупке такой контроллер заряда. На таких модулях можно мастерить много интересных штук. В скором времени я покажу как с их помощью соорудить блок бесперебойного питания для камер Canon.

AliExpress RU&CIS

Привет! В этом окошке авторы блогов любят мериться крутостью биографий. Мне же будет гораздо приятнее услышать критику статей и блога в комментариях. Обычный человек, который любит музыку, копание в железе, электронике и софте, особенно когда эти вещи пересекаются и составляют целое, отсюда и название — АудиоГик. Материалы этого сайта — личный опыт, который, надеюсь, пригодится и Вам. Приятно, что прочитали 🙂

Источник

10 простых схем зарядок литий-ионных аккумуляторов и как правильно заряжать

Немного о литий-ионных батареях

К ним относятся следующие аспекты:

  • высокая плотность выдаваемого тока и накапливаемой энергии, длительное сохранение заряда;
  • отсутствие эффекта снижения емкости при регулярной неполной зарядке;
  • саморазряд не более 4-8% в месяц при хранении без подзарядки, старение не более чем на 15-20% в год;
  • отсутствие необходимости в полном разряде для тренировки энергоемкости накопителя;
  • небольшой вес, вариативность формы и габаритов устройства;
  • диапазон рабочих температур – от -20°С до +50°С (низкие температуры препятствуют подзарядке);
  • длительный срок службы (до 10 лет работы и более 1000 циклов разряда).

Недостатками литиевых батарей являются:

  • зависимость срока эксплуатации от длительности использования и хранения, а не количества циклов разряда;
  • риск выхода из строя при перезаряде (поступлении тока по завершении зарядки);
  • низкая устойчивость к глубокому разряду;
  • высокая стоимость;
  • взрывоопасность при механических повреждениях и избытке тока, если они приводят к нагреву электролита и нарушению герметичности корпуса.

Название аккумулятора 18650 обусловлено его формой и габаритами. Ширина батареи составляет 18 мм, а длина – 65 мм. Последняя цифра в маркировке означает цилиндрическую форму АКБ. Схема накопителя снабжена контроллером, который предотвращает перегревание в процессе подзарядки.

Корпус аккумулятора может маркироваться и более подробно: например, INR18650-20R. Первая буква отличает все АКБ литиевого типа, вторая уточняет вид материала катода (C – кобальт, N – марганец, F – феррофосфат).

Буква «R» расшифровывается как rechargeable («перезаряжаемый источник»). Следующие 5 цифр отражают габариты и фактор формы батареи, а последняя – емкость АКБ в А/ч.

Аккумуляторы 18650 с платой защиты могут маркироваться как 18700 или 18670. Контроллер защитной платы позволяет предупредить превышение номинального вольтажа батареи (4,2 В) и его снижение более чем до 2,5 В.

Как сделать зарядку для литий-ионных аккумуляторов самостоятельно

Наиболее простым вариантом считается использование зарядного устройства от мобильного телефона. Приборы выдают напряжение, подходящее для восстановления мощности аккумуляторов 18650. Способ используется только в экстренных случаях. Частое его применение приводит к снижению емкости АКБ.

Самодельная зарядка для литий-ионного 18650-го аккумулятора, сделанная из старого зарядного устройства от телефона.

Чтобы зарядить батарейку, выполняют такие действия:

  1. Штекер зарядного устройства срезают. Провода освобождают от изоляции и делят на положительный и отрицательный полюса. Плюсовой кабель чаще всего имеет оплетку красного цвета, минусовой – черного.
  2. Очищенные провода прикрепляют к полюсам батареи пластилином. USB-кабель подсоединяют к разъему компьютера или специального адаптера.
  3. Источник питания заряжают, периодически отслеживая процесс. Заряжать батарейку рекомендуется не более часа. Этого времени достаточно для полного восстановления емкости.

Для сборки усовершенствованной зарядки используют сложные схемы. Перед началом работы подготавливают паяльник, припой, флюс и клей. Отдельно приобретают плату, необходимую для нормального функционирования самодельного ЗУ.

Сборку осуществляют так:

  1. Плату устанавливают в подготовленный заранее пластиковый бокс. Конструкцию снабжают плюсовым и минусовым проводами. Бокс используется для размещения батареи во время зарядки. Сделать емкость можно из старого ЗУ, непригодного к эксплуатации бытового прибора или игрушки. Размеры должны соответствовать параметрам аккумулятора.
  2. Плату припаивают, учитывая маркировку. Обозначения позволяют без труда разместить провода. Плата снабжена разноцветными индикаторами, отражающими ход зарядки. Микросхему приклеивают к боксу в удобном месте. После этого, соблюдая полярность, подключают провода. Перед фиксацией их очищают от изоляции и обрабатывают канифолью. На плату наносят небольшое количество жидкого припоя.

При изготовлении устройства нельзя допускать короткого замыкания. Приведенная выше схема позволяет собрать простое, но надежное ЗУ за несколько часов. С помощью USB-кабеля его подсоединяют к электросети или компьютеру. Батарею устанавливают в получившееся гнездо. После включения зеленого индикатора прибор отключают.

Какое устройство следует использовать

Разные модели зарядных устройств отличаются техническими характеристиками, набором функций и некоторыми другими параметрами:

Liitokala Lii-500 – универсальная зарядка, которая сама подбирает токи для .

  1. Простые. Такие приборы подают ток силой 1 А. Они имеют единственное гнездо для установки АКБ 18650.
  2. Усовершенствованные. Прибор снабжен 2 гнездами для батареек. Максимальный уровень напряжения составляет 4,2 В. Такое зарядное средство отличается более высокой стоимостью. К дополнительным функциям относится индикация заряда. Прибор самостоятельно ограничивает время процедуры, предотвращая перезаряд.
  3. Универсальные. Используются для зарядки источников питания типа 18650 и 26650. Модели такого типа используются для восстановления работоспособности литий-ионных и никель-кадмиевых элементов. Лучшие устройства оснащены системой безопасности, избавляющей от регулярного измерения напряжения и силы тока.
  4. Самодельные. Если готовый прибор найти невозможно, зарядное устройство можно собрать в домашних условиях. Компоненты соединяют согласно схемам.

Немного о литий-ионных батареях

Особенности АКБ типа 18650:

  1. Длительный срок службы. Источник питания способен выдерживать до 600 циклов разряда и заряда. Литиевые батареи обладают увеличенным сроком эксплуатации, они могут длительно сохранять емкость.
  2. Компактные размеры. Высота элемента составляет 65 мм, диаметр – 18 мм. Эти числа легли в основу названия аккумулятора. При небольших размерах батарея имеет широкие возможности.
  3. Наличие контроллера. Большая часть аккумуляторов старого образца отличается высокой взрывоопасностью. В корпусе батареи протекают химические реакции, скорость которых при перегреве многократно увеличивается. Возникало и механическое замыкание нескольких содержащих электролит емкостей, приводившее к возгоранию. Контроллер, встраиваемый в современные источники питания, препятствует сильному перегреву и взрыву. Это же от перезаряда.
  4. Невозможность длительного хранения. Долго находившиеся в нерабочем состоянии батарейки быстро утрачивают емкость. Заряжать li-ion аккумулятор нужно регулярно. При этом соблюдают ряд правил, препятствующих выходу изделия из строя. Нужно правильно рассчитывать ток заряда и ограничивать напряжение. Нарушение правил приводит к снижению срока службы.

Какое устройство следует использовать

Для подзарядки АКБ 18650 нужно использовать устройства с номинальным напряжением 4,2 В. Если литий-ионный накопитель планируется подключать к универсальному ЗУ, то оно должно быть оборудовано контроллером параметров и индикаторами окончания процесса.

Наиболее дешевые модели имеют 1-2 гнезда для батарей, максимальный ампераж до 1 А и номинальный вольтаж 4,2 В. Лучший вариант ЗУ для литиевых накопителей – интеллектуальное устройство, оборудованное измерителем напряжения на клеммах, функцией восстановления после глубокого разряда и защитой от превышения номинального вольтажа.

Как заряжать АКБ 18650

Многие зарядные устройства (ЗУ) универсальны, однако при зарядке литий-ионных аккумуляторов нужно соблюдать такие правила:

0,5-1 А – оптимальный ток заряда для 18650-х аккумуляторных батарей.

  1. На раннем этапе необходимо подавать не более 0,05 В. Заканчивают процедуру, повышая параметр до 4,2 В. Это значение является допустимым безопасным уровнем для батарей 18650.
  2. Ток заряда должен составлять 0,5-1 А. При большем значении заряд будет набираться быстрее. Однако подавать силу тока в 1 А сразу не рекомендуется. Показатель должен повышаться плавно.
  3. Ускоренные способы зарядки нужно применять только в экстренных случаях. Время процедуры не должно превышать 3 часов. Перезаряд приводит к повреждению компонентов АКБ, вызывая перегрев.
  4. Рекомендуется использовать устройства, автоматически контролирующие ход зарядки. Они самостоятельно отключаются после набора батареей требуемой мощности. Дешевые и самодельные приборы не оснащаются контроллерами, поэтому пользователю придется самостоятельно отслеживать ход процедуры.

Полезные рекомендации при эксплуатации аккумуляторов 18650

Чтобы сохранить емкость АКБ и продлить срок их эксплуатации, нужно следовать нескольким советам:

  • правильно выбирать режим работы ЗУ, при отсутствии контроллера регулировать параметры автоматически;
  • избегать глубокого разряда, подключать аккумулятор при снижении заряда до 70-80%;
  • при расчете длительности восстановления учитывать не только количество ампер-часов, но и разницу вольтажа при зарядке в заводских и домашних условиях, которая влияет на ваттную емкость;
  • не пытаться увеличить емкость АКБ циклами разряд-заряд;
  • не допускать перегрева накопителя, не оставлять его под прямыми солнечными лучами;
  • эксплуатировать батарею при температуре +10…+25°С, для использования при низких температурах утеплить корпус;
  • не допускать ударов по телу АКБ, воздействия сильного трения и вибрации, при транспортировке укладывать аккумуляторы на толстую мягкую подложку;
  • хранить литий-ионные накопители с 50-60% заряда и при температуре около 0°С.

При покупке аккумулятора нужно обращать внимание на дату выпуска. Батареи, произведенные более 3 лет назад, считаются просроченными и малофункциональными

Как заряжать АКБ 18650

При зарядке АКБ 18650 необходимо соблюдать следующие правила:

  1. Начинать восстановление нужно при напряжении 0,05 В, постепенно повышая его до 4,2 В.
  2. Диапазон допустимого тока заряда – 25-50% от емкости (например, для АКБ на 2000 мА/ч он варьируется от 0,5 до 1 А).
  3. Оптимальный показатель составляет 25-30% емкости, максимальный ампераж используется только при срочной подзарядке.
  4. Допустимое время зарядки при полном разряде аккумулятора – 3 часа.
  5. Для точного выбора длительности восстановления нужно измерить его вольтаж мультиметром или подключить к интеллектуальному зарядному устройству (ЗУ).

Оптимальный режим состоит из двух этапов:

  1. CC (constant current). На нем нужно обеспечить постоянный ампераж, который находится в пределах 20-50% емкости аккумулятора. При ускоренном заряде может использоваться и большее значение тока, но часто применять такой режим не рекомендуется. Зарядное устройство должно быть оборудовано функцией плавного подъема вольтажа. На первом этапе зарядник работает как стабилизатор силы тока.
  2. CV (constant voltage). При подъеме напряжения до 4,2 В можно переходить ко второму этапу подзарядки, на котором поддерживается вольтаж 4,15-4,25 В. К концу первого этапа АКБ восстанавливается на 70-80%. По мере накопления заряда до 90-95% ампераж будет плавно снижаться. Как только его значение достигнет 1-5% емкости, батарею можно отключать от ЗУ.

Некоторые модели «зарядок» оборудованы режимом восстановления АКБ при глубоком разряде (менее 2,5 В). На нем батарея заряжается низким током (не более 5-10% емкости) до тех пор, пока ее вольтаж не достигнет 2,8 В. После этого ЗУ переходит в режим постоянного тока.

Источник

Модуль зарядного устройства для литиевых аккумуляторов

Модуль зарядки TP4056 с защитой аккумуляторов от перезарядки, перегрузки и короткого замыкания. TP4056 со встроенным термодатчиком позволяет заряжать аккумулятор током до 1000 мА, сила тока регулируется заменой резистора Rprog на модуле. Рассмотрим, как правильно включить модуль зарядки аккумуляторов с нагрузкой к микроконтроллеру Ардуино для бесперебойного питания платы.

TP4056 модуль зарядки с защитой li-ion аккумуляторов

Контроллер TP4056 является улучшенной модификацией чипа TP4054. Имеет защиту от короткого замыкания, автоматически завершает зарядку аккумуляторов при напряжении на выходе 4,2 Вольт и снижении тока заряда до 1/10 от заданной величины. При зарядке аккумулятора на плате включается красный светодиод, когда батарея полностью заряжена включается встроенный зеленый светодиод.

Технические характеристики TP4056

  • Контроллер: TP4056 для зашиты переразряда/перезаряда аккумулятора;
  • Режим зарядки: линейная 1%;
  • Ток зарядки: до 1 Ампер (настраивается);
  • Точность зарядки: 1.5%;
  • Входное напряжение: 4.5 — 5,5 Вольт;
  • Напряжение полного заряда: 4,2 Вольт;
  • Защита от переполюсовки: нет;
  • Защита от перезаряда: 4,30 ± 0,050 Вольт;
  • Защита от переразряда: 2,40 ± 0,100 Вольт;
  • Входной разъем: mini USB и контакты для проводов;
  • Размеры платы: 25 × 17 × 4 мм.

График зарядки аккумуляторов от TP4056 изображен выше. Процесс состоит из нескольких этапов. Сначала идет зарядка током 1/10 от запрограммированного резистором Rprog (по умолчанию 1,2 кОм) до уровня 2,9 Вольт. Затем идет зарядка максимальным током, а при достижении заряда 4,2 Вольта происходит стабилизация напряжения. При достижении тока 1/10 от заданного значения — зарядка отключается.

Резистор (кОм) Ток заряда (мА)
30
20
10
5
4
3
2
1.66
1.5
1.33
1.2
50
70
130
250
300
400
580
690
780
900
1000

Чтобы подобрать оптимальный ток зарядки аккумулятора, необходимо правильно подобрать резистор Rprog, согласно таблице, размещенной выше. Разберем простой пример: имеется аккумулятор емкостью 1700 Ампер/часов. Чтобы узнать необходимый ток зарядки, следует емкость разделить на 2, то есть: 1700 / 2 = 850 мА. Поэтому необходимо заменить резистор Rprog на резистор с сопротивлением 1,33 кОм.

TP4056 схема подключения с нагрузкой

На картинке выше, продемонстрировано использование модуля зарядки при подключении к нагрузке с одним аккумулятором 18650. Обратите внимание, что при отсутствии внешнего источника питания, подключенного к USB-порту или контактам IN, на пины OUT начнет поступать питание от аккумулятора. На выходе будет напряжение 3,7 Вольт, но это можно исправить, используя повышающий преобразователь.

TP4056 подключение аккумуляторов 18650

На схеме выше показано, как сделать с помощью модуля зарядки источник бесперебойного питания для микроконтроллера Arduino Uno или power bank. Но для этого следует подключить к модулю TP4056 несколько аккумуляторов, чтобы увеличить емкость батареи и более длительное время работы устройства. Также потребуется любой модуль, повышающий постоянное напряжение до 5 Вольт.

TP4056 схема подключения к Ардуино плате

Как мы уже говорили, данную схему повер банка можно использовать в качестве источника бесперебойного питания для Arduino Nano или Uno. Для этого к повышающему модулю следует подключить USB шнур. Черный провод USB кабеля припаивается к контакту модуля VOUT-, а красный провод к VOUT+. В качестве питания для модуля зарядки можно использовать солнечные панели или блок питания.

Заключение. Мы рассмотрели, как подключить модуль зарядки TP4056 и аккумуляторы 18650 с защитой от перезарядки и переразряда, чтобы сделать power bank своими руками. Теперь вы знаете, как правильно подключить к TP4056 к Arduino для бесперебойной работы устройств на микроконтроллере. Любые вопросы по рассмотренной теме вы можете оставить ниже в комментариях к этой записи.

Источник

Читайте также:  Автоматическое зарядное устройство для аккумуляторного фонаря