Контроллер заряда и балансир li-ion аккумулятора 18650
Контроллер заряда – встроенная схема защиты в аккумуляторе, которая предотвращает его сильную разрядку или перезарядку, контролирует силу тока и температуру, задает время окончания заряда. Как работает контроллер заряда в li-ion аккумуляторе, для чего он нужен?
Устройство li-ion аккумулятора 18650
Контроллер зарядки литий-ионного аккумулятора производят корпорации: Sony, LG, Sanyo, Panasonic, Samsung, ATL, HYB. Остальные производители перекупают элементы и выдают за собственный продукт.
Максимальная емкость ионных аккумуляторов 18650 – 3600 мА-ч.; они, в отличие от батарей, могут многократно перезаряжаться. Цифра 18650 – форм-фактор, указывающий на длину аккумулятора (65 мм) и его диаметр (18 мм).
Основные характеристики литий-ионного аккумулятора 18650:
- максимально допустимое напряжение – 4,2 В (небольшие перезарядки губительно сказываются на сроке службы);
- минимально допустимое напряжение – 2,75 В (при понижении до 2 В заряд не подлежит восстановлению);
- минимально допустимая температура –20 °C 0 С (зарядить на морозе невозможно);
- максимально допустимая температура +60 °C 0 С (при превышении показателей возможны взрыв и возгорание);
- измерение емкости в ампер-часах – полная зарядка выдает 1 А тока в течение 60 минут, 2 А тока – 30 минут, 15 А тока – 4 минуты.
Литий-ионный АКБ преобразовывает химическую энергию в электрическую, поэтому возникает ток, приводящий в действие то или иное устройство. Такие батарейки оснащаются специальной защитной схемой, которая контролирует уровень ее нагрева и циклы работы. При перегреве и спаде напряжения до 2,7 В – контроллер автоматически прекращает работу АКБ.
Li-ion батарейки очень взрывоопасны, поэтому в них встроены защитные платы. Глубокий разряд таких батарей наступает через 2–3 года их неиспользования, после чего восстанавливаются они проблематично и не отличаются долгим сроком службы
Предназначение контроллера зарядки
Контроллер регулирует процесс заряда и разрядки аккумулятора. Если напряжение падает ниже 3 В, защита отключает банку от потребителя тока: устройство выключается. Также защитная схема предотвращает короткие замыкания. Некоторые виды защитных плат имеют терморезистор, который защищает элементы АКБ от перегрева.
Все платы осуществляют контроль за:
- переразрядом батарейки;
- перезарядом;
- током нагрузки;
- температурой.
Имея под рукой защитную плату, можно переделать старые АКБ шуруповерта, дрели на литиевые батареи, отличающиеся долгим сроком службы.
Особенности контроллера для зарядки li-ion аккумулятора 18650
Контроллер для литиевых аккумуляторов 18650 расположен сверху корпуса, чем удлиняет само устройство. Плата расположена впереди отрицательной клеммы, защищая АКБ от перезарядки/переразрядки. Основная страна-производитель – Китай.
Предназначение контролера зарядки
Как только защита будет установлена, корпус помещают в специальную пленку с термоусадкой. Из-за дополнительной защитной конструкции корпус удлиняется и утолщается, в редких случаях – не помещается в гнездо. В случае применения аккумулятора 18650 для создания тока в 12 В с общим контроллером заряда прерыватели не устанавливаются.
Основная функция такой защиты – сохранение работы источника энергии в установленных параметрах.
Виды контроллеров
Контроллеры для li-ion аккумуляторов отличаются ценой, производителем и внутренними элементами.
- HX-3S-A02 (цена – 150 рублей). Производитель – Китай, внутри чип S-8254AA, который защищает литий-ионные элементы от сильного заряда/разряда, короткого замыкания. К нему можно подключить три АКБ типа 18650 (максимальный ток – 10 А). Размер защиты – 50х16 мм.
- FDC-2S-2 (цена – 50 рублей). Производитель – Китай, чип – HY2120, предотвращает сильный заряд/разряд, короткие замыкания. Возможно подключение двух АКБ типа 18650 (максимальный ток – 3А). Параметры защиты – 36х6х1 мм.
- HX-2S-01 (цена – 70 рублей). Производство – Китай, чип – HY2120, уберегает от сильного заряда/разряда, короткого замыкания. Подключаются две АКБ типа 18650 (максимальный ток – 3 А). Размер защиты – 36х6х1 мм.
- HX-3S-D01(цена – 220 рублей). Производство – Китай, чип S-8254AA, контролирует сильный заряд/разряд, короткое замыкание. К нему можно подсоединить три АКБ типа 18650 (максимальный ток – 20 А). Размер защитной платы – 51х23 мм.
- HX-3S-D02 (цена – 200 рублей). Производитель – Китай, внутри чип S-8254AA, защищает от сильного заряда/разряда, короткого замыкания. К нему подключаются три АКБ типа 18650 (максимальный ток – 10 А). Размер схемы – 50х16 мм.
- HX-4S-A01 (цена – 250 рублей). Производитель – Китай, внутри чип S-8254AA, защищает от сильного заряда/разряда, короткого замыкания. Можно подсоединить четыре АКБ типа 18650 (максимальный ток – 6 А). Размер микросхемы – 67х16мм.
Схемы контроллеров
Ошибочно думать, что контроллеры заряда-разряда существуют: разрядом управлять не нужно, ток находится в прямой зависимости от нагрузки. Главное – это контроль за напряжением и температурой, временем завершения заряда. Под таким контроллером подразумевают плату, защищающую АКБ от глубокой зарядки/разрядки.
Схема контроллера литий-ионного аккумулятора
Микросхемы состоят из различных электронных элементов, поэтому имеют вариации:
Источник
Защита литий-ионных аккумуляторов (контроллер защиты Li-ion)
Защита литий-ионных аккумуляторов (Li-ion). Я думаю, что многие из вас знают, что, например, внутри аккумулятора от мобильного телефона имеется ещё и схема защиты (контроллер защиты), которая следит за тем, чтобы аккумулятор (ячейка, банка, итд…) не был перезаряжен выше напряжения 4.2 В, либо разряжен меньше 2…3 В. Также схема защиты спасает от коротких замыканий, отключая саму банку от потребителя в момент короткого замыкания. Когда аккумулятор исчерпывает свой срок службы, из него можно достать плату контроллера защиты, а сам аккумулятор выбросить. Плата защиты может пригодиться для ремонта другого аккумулятора, для защиты банки (у которой нету схем защиты), либо же просто можно подключить плату к блоку питания, и поэкспериментировать с ней.
У меня имелось много плат защиты от пришедших в негодность аккумуляторов. Но поиск в инете по маркировкам микросхем ничего не давал, словно микросхемы засекречены. В инете находилась документация только на сборки полевых транзисторов, которые имеются в составе плат защиты. Давайте посмотрим на устройство типичной схемы защиты литий-ионного аккумулятора. Ниже представлена плата контроллера защиты, собранная на микросхеме контроллера с обозначением VC87, и транзисторной сборке 8814 (даташит тут):
На фото мы видим: 1 — контроллер защиты (сердце всей схемы), 2 — сборка из двух полевых транзисторов (о них напишу ниже), 3 — резистор задающий ток срабатывания защиты (например при КЗ), 4 — конденсатор по питанию, 5 — резистор (на питание микросхемы-контроллера), 6 – терморезистор (стоит на некоторых платах, для контроля температуры аккумулятора).
Вот ещё один вариант контроллера (на этой плате терморезистор отсутствует), собран он на микросхеме с обозначением G2JH, и на транзисторной сборке 8205A (даташит тут):
Два полевых транзистора нужны для того, чтобы можно было отдельно управлять защитой при заряде (Charge) и защитой при разряде (Discharge) аккумулятора. Даташиты на транзисторы находились практически всегда, а вот на микросхемы контроллеров – ни в какую!! И на днях вдруг я наткнулся на один интересный даташит на какой-то контроллер защиты литий-ионного аккумулятора (даташит тут).
И тут, откуда не возьмись, явилось чудо — сравнив схему из даташита со своими платами защиты, я понял: Схемы совпадают, это одно и то же, микросхемы-клоны! Прочитав даташит, можно применять подобные контроллеры в своих самоделках, а поменяв номинал резистора, можно увеличить допустимый ток, который может отдать контроллер до срабатывания защиты.
Увеличение мощности интегральных усилителей транзисторами. Рассматривается на примере схем LM3886 и TDA7294.
Кодовая кнопка для ограничения доступа к объектам, простая схема с реле на МК Attiny13.
Схема усилителя и микрофона из пьезоэлемента, подходящая для сборки своими руками.
Источник
Защита аккумулятора от глубокого разряда
По работе, время от времени ездим в лес и закапываем всякое электронное барахло. Это барахло питается от свинцового аккумулятора и работает на одной зарядке месяцев 8-10. В случае несвоевременной замены аккумулятору может поплохеть. Глубокий разряд и особенно глубокий разряд слабыми токами плохо сказывается на здоровье химических источников энергии. Для их защиты нам и понадобился блок защиты аккумулятора от «глубокого» разряда.
В интернете куча различных схем отключающих нагрузку при разряде аккумулятора, но найти подходящий так и не удалось. Либо схемные решения вызывают сомнения в надежной работе, либо они попросту уж очень много кушают. Так что поиски решения продлились некоторое время.И вот в закромах магазина ЧИП И ДИП коллега нашел «шедевр» российской электроники: КР1117СП10. Монитор питания рассчитанный на 10 вольт. На базе этой микросхемы и сделали наш блок защиты. Принципиальная схема блока защиты приведена на рисунке 1.
Рис. 1. Принципиальная схема блока защиты аккумулятора.
В качестве детектора снижения напряжения используется КР1171СП10 (DA1). В качестве коммутирующего элемента используется полевой N канальный транзистор VT1. Пока напряжение аккумулятора выше порогового значения микросхема DA1 ни как не влияет на работу схемы, транзистор VT1 полностью открыт, напряжение подается на нагрузку Rн. Если напряжение аккумуляторной батареи G1 падает ниже порогового значения на выводе 3 микросхемы DA1 появляется низкий уровень напряжения, шунтирующий затвор транзистора VT1, что приводит к его закрытию и отключению нагрузки Rн.В дежурном режиме, согласно документации на микросхему, блок защиты должен потреблять не более 20мкА. Реальные измерения при напряжении аккумулятора 12,5 В показали 11 мкА. Обладая столь низким собственным потреблением, устройство защиты практически не влияет на продолжительность работы аккумуляторной батареи. Однако есть и ложка дегтя. При срабатывании защиты потребление возрастает на порядок, до 300 мкА, согласно документации. Неприятно, но терпимо.
Для придания законченного вида и защиты устройства от внешних воздействий, методом FDM 3D печати был изготовлен корпус. 3D модель, готовое устройство и пример подключения к аккумулятору изображены на рисунках 2, 3 и 4 соответственно.
Источник
Защита от глубокого разряда литиевого аккумулятора
- Усилители мощности
- Светодиоды
- Блоки питания
- Начинающим
- Радиопередатчики
- Разное
- Ремонт
- Шокеры
- Компьютер
- Микроконтроллеры
- Разработки
- Обзоры и тесты
- Обратная связь
- Усилители мощности
- Шокеры
- Качеры, катушки Тэсла
- Блоки питания
- Светодиоды
- Начинающим
- Жучки
- Микроконтроллеры
- Устройства на ARDUINO
- Программирование
- Радиоприемники
- Датчики и ИМ
- Вопросы и ответы
- Усилители мощности
- Светодиоды
- Блоки питания
- Начинающим
- Радиопередатчики
- Разное
- Ремонт
- Шокеры
- Компьютер
- Микроконтроллеры
- Разработки
- Обзоры и тесты
- Обратная связь
- Усилители мощности
- Шокеры
- Качеры, катушки Тэсла
- Блоки питания
- Светодиоды
- Начинающим
- Жучки
- Микроконтроллеры
- Устройства на ARDUINO
- Программирование
- Радиоприемники
- Датчики и ИМ
- Вопросы и ответы
Плата защиты LI-ION аккумуляторов
На сегодняшний день литий ионные аккумуляторы являются самыми эффективными аккумуляторами. Они компактные, имеют большую энергоемкость, лишены эффекта памяти. При всех достоинствах у них имеется один существенный недостаток, их работу и процесс заряда нужно тщательно контролировать. Если аккумулятор разрядится ниже некоторого предела или перезарядить, он быстро теряет свои свойства, вздуться и даже взорваться. Тоже самое и в случае перегрузки и коротких замыканиях — нагрев, образование газов и в итоге взрыв.
Некоторые литий ионных аккумуляторы снабжены предохранительным клапаном, который не даст аккумулятору взорваться, но большая часть мощных полимерных аккумуляторов таких клапанов не имеют.
Другими словами, при эксплуатации литий ионных аккумуляторов требуется система их защиты.
Многие наверняка заметили маленькие платы в аккумуляторах мобильных телефонов, вот как раз эта плата и является защитой. Защищает она от глубкого разряда, от перезаряда и от коротких замыканий или перегрузок по току.
Схема этой защиты очень простая, н а плате находиться пара микросхем с мелочевкой.
За всеми процессами следит микросхема DW01. Вторая микросхема — это сборка из двух полевых транзисторов. Первый транзистор контролирует процесс разряда, второй отвечает за заряд батареи.
Во время разряда микросхема следит за падением напряжения на переходах полевых ключей, если оно доходит до критической величины (150-200мВ), микросхема закрывает транзисторы, отключая батарею от нагрузки. Работа схемы восстанавливается менее чем за секунду после того, после снятия нагрузки.
Падение напряжение на переходах транзисторов микросхема отслеживает через второй вывод.
В зависимости от емкости аккумулятора эти контроллеры могут кардинально отличаться внешним видом, током короткого замыкания и топологией схемы, но функция у них всегда одинаковая — защищать аккумулятор от перезаряда, глубокого разряда и перегрузки по току. Многие контроллеры также обеспечивают защиту от перегрева банки, контроль температуры осуществляется термодатчиком.
У меня скопилось очень много плат защиты от аккумуляторов мобильных телефонов и как раз для одного моего проекта в котором задействован литий ионный аккумулятор понадобилась система защиты. Проблема в том, что эти платы рассчитаны на максимальный ток в 1Ампер, а мне нужна была плата с током минимум 6-7 Ампер. Платы с нужным для моих целей током стоят меньше пол доллара, но ждать месяц-другой я не мог. Осмотрев китайские платы на алиэкспресс я понял, что они не многим отличаются от моих. Схематика та же, только ток защиты побольше за счёт параллельного включения силовых транзисторов.
При параллельном соединении полевых транзисторов, сопротивление их каналов будет значительно меньше, поэтому падение напряжения на них будет меньше, а ток срабатывания защиты будет больше. Параллельное соединение ключей даст возможность коммутировать большие токи, чем больше ключей , тем больше общий ток коммутации.
В схеме применены стандартные сборки из двух полевиков в одном корпусе. Их часто применяют на платах защиты аккумуляторов смартфонов и не только.
Сборки 8205А имеют очень много аналогов, как и микросхемы контроля DW01.
После сборки платы я протестировал её. Получилось именно то, что мне нужно для проекта:
- Плата заряжает аккумулятор до напряжения 4,2В и отключает его от зарядного устройства;
- При разряде аккумулятора ниже 2,5В аккумулятор отключился от нагрузки;
- При токах выше 12-13 Ампер аккумулятор отключается.
Литий ионные аккумуляторы имеют малый саморазряд, но аккумулятор дополненный такой платой будет разряжаться быстрее, чем аккумулятор без защиты. Ток потребления схемы защиты мизерный, и составляет около 2,5 МИКРОампер.
Источник