Меню

Как сделать простой регулятор оборотов скорости вращения для компьютерного вентилятора кулера маломощного э

Как сделать простой регулятор оборотов, скорости вращения для компьютерного вентилятора, кулера, маломощного электродвигателя постоянного тока

Содержание

  1. Регулятор: сборка своими руками
  2. Способы регулировки
  3. Как подключить?
  4. Разновидности
  5. Ступенчатые модели с применением автотрансформатора
  6. Автотрансформаторы с электронным управлением
  7. Симисторный (тиристорный) контроллер
  8. Принцип работы и предназначение
  9. Как уменьшить или увеличить скорость вентилятора вытяжки

Регулятор: сборка своими руками

Уделив час-два свободного времени, можно соорудить регулятор самостоятельно. Понадобится:

  • резистор (далее – Р);
  • переменный резистор (далее – ПР);
  • транзистор (далее – Т).

База Т припаивается к серединному контакту ПР, коллектор – к стороннему выходу. К обратному краю ПР нужно присоединить резистор с сопротивлением 1000 ОМ. Второй выход Р припаивается к эмиттеру Т.

Осталось присоединить провод вводного напряжения к Т (он уже сцеплен с крайним выходом ПР). Выход «+» припаивается к эмиттеру ПР.

Чтобы проверить, как работает самодельный регулятор, потребуется вентилятор. Его плюсовой провод соединяется с проводом, идущим от эмиттера. Провод выводного напряжения подсоединяется к блоку питания.

Минусовой провод нужно подсоединить напрямую. Для проверки крутим колесико ПР и наблюдаем за тем, как меняется количество оборотов.

Конструкция безопасна (минусовой провод подключается напрямую) – если произойдет замыкание в контроллере, с вентилятором ничего не случится.

Процесс проверки выглядит примерно так:

При желании можно синхронизировать контроллер сразу с двумя вентиляторами, как показано на схеме:

Синхронизация контроллера с двумя вентиляторами

Установка не отнимает много времени, особенно если работать по готовым схемам. Главное – правильно выбрать устройство под помещение. Не стоит жалеть о потраченных деньгах, ведь чистый воздух важнее. Тем более, всегда можно сэкономить, смастерив регулятор самостоятельно.

Способы регулировки

Для электрических вытяжек, устанавливаемых в жилых помещениях (на кухне, а также в туалетных и ванных комнатах) предусматривается простейший вариант управления. В этом случае возможны только два состояния: включено или выключено.

Для более экономичной работы устройства (не всегда нужно, чтобы оно работало на полную мощность) потребуется регулировать обороты вентилятора. Перед покупкой изделия обязательно проконсультируйтесь у продавца о наличии соответствующей опции.

Реализовать указанную функцию удается следующими способами:

  • изменением частоты тока, поступающего на обмотку двигателя;
  • варьированием уровня питающего напряжения;
  • изменением мощности, отдаваемой в нагрузку.

На практике регулировка осуществляется посредством особых устройств (контроллеров), в которых применяются различные принципы управления.

Как подключить?

Выполнить подключение контроллера скорости к вентилятору можно своими руками. Для этого необходимо внимательно прочитать инструкцию и соблюдать ряд мер безопасности при работе с электроприборами. В зависимости от вида конструкции и вида обслуживаемых вентиляторов, контроллеры могут быть установлены на стене, внутри стены, внутри вентустановки или в отдельно стоящем шкафу системы «умный дом». Настенный и внутристенный регуляторы закрепляются при помощи шурупов или дюбелей, в зависимости от габаритов и веса устройства. Крепёжные элементы обычно входят в комплект наряду со схемой подключения прибора.

Схемы подключения у моделей могут отличаться, однако, общие закономерности и последовательность выполнения действий всё же есть. Вначале контроллер нужно подключить к кабелю, подающему ток на вентилятор. Основной целью данного этапа является разделение проводов «фаза», «ноль» и «земля». Затем выполняют подсоединение проводов к входным и выходным клеммам. Главное при этом — не перепутать провода местами и выполнить подключение согласно инструкции. Кроме того, следует проконтролировать, чтобы размер сечения кабеля питания и соединения соответствовал максимально разрешённому напряжению подключаемого устройства.

При подключении регулятора скорости к вентиляторам ноутбука напряжением 12 вольт необходимо выяснить предельно допустимые температуры деталей устройства. Иначе можно лишиться компьютера, у которого от перегрева выйдут из строя процессор, материнская плата и графическая карта. При подключении контроллера к оргтехнике необходимо также строго следовать инструкции. При необходимости подключения сразу нескольких вентиляторов лучше приобрести многоканальный регулятор, так как некоторые модели способны обслуживать до четырёх вентиляторов одновременно.

Читайте также:  Блок питания с дежурным источником

Источник

3 лучшие схемы регуляторов скорости вентиляторов

Регулятор скорости вентилятора

Схема регуляторов скорости вращения вентиляторов — необходимые радиоэлементы для сборки, инструкции по монтажу своими руками, видео.

  1. Простая схема
  2. С датчиком температуры
  3. Для уменьшения шума
  4. Видео

Рассмотрим ТОП-3 рабочих схемы регулятора скорости вращения вентилятора. Каждая схема не только проверена, но и отлично подойдёт для воплощения начинающими радиолюбителями. К каждой схеме прилагается список необходимых компонентов для монтажа своими руками и пошаговые рекомендации.

Регулятор скорости вентилятора — простая схема

Предлагаемая ниже схема обеспечивает простую регулировку оборотов вентилятора без контроля оборотов. В устройстве использованы отечественные транзисторы КТ361 и КТ814. Конструктивно плата размещается непосредственно в блоке питания, на одном из радиаторов. Она имеет дополнительные посадочные места для подключения второго датчика (внешнего) и возможность добавить стабилитрон, ограничивающий минимальное напряжение, подаваемое на вентилятор.

Принципиальная схема регулятора

Список необходимых радиоэлементов:

  • 2 биполярных транзистора — КТ361А и КТ814А.
  • Стабилитрон — 1N4736A (6.8В).
  • Диод.
  • Электролитический конденсатор — 10 мкФ.
  • 8 резисторов — 1х300 Ом, 1х1 кОм, 1х560 Ом, 2х68 кОм, 1х2 кОм, 1х1 кОм, 1х1 МОм.
  • Терморезистор — 10 кОм
  • Вентилятор.

Плата регулятора скорости вентилятора:

Печатная плата

Фото готового регулятора скорости вентилятора:

Внешний вид регулятора скорости вентилятора

Регулятор вентилятора с датчиком температуры

Как известно, вентилятор в блоках питания компьютеров формата AT вращается с неизменной частотой независимо от температуры корпусов высоковольтных транзисторов. Однако блок питания не всегда отдает в нагрузку максимальную мощность. Пик потребляемой мощности приходится на момент включения компьютера, а следующие максимумы — на время интенсивного дискового обмена.

  • Как сделать управляемую плату регулятора на 1,2–35 В

Если же учесть ещё и тот факт, что мощность блока питания обычно выбирается с запасом даже для максимума энергопотребления, нетрудно прийти к выводу, что большую часть времени он недогружен и принудительное охлаждение теплоотвода высоковольтных транзисторов чрезмерно. Иными словами, вентилятор впустую перекачивает кубометры воздуха, создавая при этом довольно сильный шум и засасывая пыль внутрь корпуса.

Уменьшить износ вентилятора и снизить общий уровень шума, создаваемого компьютером можно, применив автоматический регулятор частоты вращения вентилятора, схема которого показана на рисунке. Датчиком температуры служат германиевые диоды VD1–VD4, включенные в обратном направлении в цепь базы составного транзистора VT1VT2. Выбор в качестве датчика диодов обусловлен тем, что зависимость обратного тока от температуры имеет более выраженный характер, чем аналогичная зависимость сопротивления терморезисторов. Кроме того, стеклянный корпус указанных диодов позволяет обойтись без каких-либо диэлектрических прокладок при установке на теплоотводе транзисторов блока питания.

Схема регулятора скорости вентилятора с датчиком температуры

Необходимые радиодетали:

  • 2 биполярных транзистора (VT1, VT2) — КТ315Б и КТ815А соответственно.
  • 4 диода (VD1-VD4) — Д9Б.
  • 2 резистора (R1, R2) — 2 кОм и 75 кОм (подбор) соответственно.
  • Вентилятор (M1).

Резистор R1 исключает возможность выхода из строя транзисторов VT1, VT2 в случае теплового пробоя диодов (например, при заклинивании электродвигателя вентилятора). Его сопротивление выбирают, исходя из предельно допустимого значения тока базы VT1. Резистор R2 определяет порог срабатывания регулятора.

Следует отметить, что число диодов датчика температуры зависит от статического коэффициента передачи тока составного транзистора VT1, VT2. Если при указанном на схеме сопротивлении резистора R2, комнатной температуре и включенном питании крыльчатка вентилятора неподвижна, число диодов следует увеличить.

Необходимо добиться того, чтобы после подачи напряжения питания она уверенно начинала вращаться с небольшой частотой. Естественно, если при четырех диодах датчика частота вращения окажется значительно больше требуемой, число диодов следует уменьшить.

Устройство монтируют в корпусе блока питания. Одноименные выводы диодов VD1-VD4 спаивают вместе, расположив их корпусы в одной плоскости вплотную друг к другу. Полученный блок приклеивают клеем БФ-2 (или любым другим термостойким, например, эпоксидным) к теплоотводу высоковольтных транзисторов с обратной стороны. Транзистор VT2 с припаянными к его выводам резисторами R1, R2 и транзистором VT1 устанавливают выводом эмиттера в отверстие «-cooler» платы блока питания.

Читайте также:  Что такое реле бензонасоса и зачем оно необходимо

Налаживание устройства сводится к подбору резистора R2. Временно заменив его переменным (100–150 кОм), подбирают такое сопротивление введенной части, чтобы при номинальной нагрузке (теплоотводы транзисторов блока питания теплые наощупь) вентилятор вращался с небольшой частотой. Во избежание поражения электрическим током (теплоотводы находятся под высоким напряжением!) «измерять» температуру наощупь можно, только выключив компьютер. При правильно отлаженном устройстве вентилятор должен запускаться не сразу после включения компьютера, а спустя 2–3 мин после прогрева транзисторов блока питания.

Схема регулятора скорости вентилятора для уменьшения шума

В отличии от схемы, которая замедляет обороты вентилятора после старта (для уверенного запуска вентилятора), данная схема позволит увеличить эффективность работы вентилятора путем увеличения оборотов при повышении температуры датчика. Схема также позволяет уменьшить шум вентилятора и продлить его срок службы.

Схема регулятора скорости вентилятора

Необходимые для сборки детали:

  • Биполярный транзистор (VT1) — КТ815А.
  • Электролитический конденсатор (С1) — 200 мкФ/16В.
  • Переменный резистор (R1) — Rt/5.
  • Терморезистор (Rt) — 10–30 кОм.
  • Резистор (R2) — 3–5 кОм (1 Вт).

Настройка производится до закрепления термодатчика на радиаторе. Вращая R1, добиваемся, чтобы вентилятор остановился. Затем, вращая в обратную сторону, заставляем его гарантированно запускаться при зажимании терморезистора между пальцами (36 градусов).

Если ваш вентилятор иногда не запускается даже при сильном нагреве (паяльник поднести), то нужно добавить цепочку С1, R2. Тогда R1 выставляем так, чтобы вентилятор гарантированно запускался при подаче напряжения на холодный блок питания. Через несколько секунд после заpяда конденсатора, обороты падали, но полностью вентилятор не останавливался. Теперь закрепляем датчик и проверяем, как все это будет крутится пpи реальной работе.

Rt — любой терморезистор с отрицательным ТКЕ, например, ММТ1 номиналом 10–30 кОм. Терморезистор крепится (приклеивается) через тонкую изолирующую прокладку (лучше слюдяную) к радиатору высоковольтных транзисторов (или к одному из них).

Видео о сборке регулятора оборотов вентилятора:

Источник

Управление вентилятором в блоках питания

Управление вентилятором в блоках питания, для многих не секрет, что в блоках питания или других устройствах в охлаждении используются вентиляторы. В промышленных устройствах это уже предусмотрено схемотехническим решением. А как быть тем, кто сам делает для себя, вот такая простая схема приходит на помощь. На рисунке показана схема управление вентилятором в блоках питания.

Конечно наверняка схема многим будет знакома, но из своей простоты до сих пор считаю ее актуальной. Предполагается, что скорость вентилятора регулируется в зависимости от тепловыделения того или иного прибора. И так если мы собираем блок питания плата обычно размещается вместе с вентилятором в отдельном корпусе. Силовые полупроводники на печатной плате снабжены радиаторами, которые выделяют больше всего тепла. Поэтому лучше всего замерять воздушный поток, выходящий через эти радиаторы. Таким образом, температура этих радиаторов определяет скорость вращения вентилятора.

Схема, которая отслеживает это, состоит из трех обычных транзисторов и нескольких пассивных компонентов. Сама схема питается от разъема 12В, которое несомненно будет присутствовать в блоке питания. Вентилятор, в свою очередь, подключен к выходу управления. Если посмотреть на схему, то окажется, что в основе регулирования лежит некая дифференциальная ступень, состоящая из транзисторов Т1 и Т2. База T2 устанавливается фиксированное напряжение с помощью делителя на резисторах R3 / R4.

На транзисторе T1 находится переменный делитель напряжения, состоящий из PTC (R1) и резистора R2. Таким образом, напряжение на базе транзистора T1 будет изменяться в зависимости от температуры, поскольку сопротивление PTC увеличивается с увеличением температуры. Конденсатор C1 гарантирует, что напряжение не изменится слишком резко в случае внезапных небольших колебаний температуры. Кроме того, его задача — на короткое время подать на вентилятор напряжение при включенном питании, чтобы он нормально запустился.

Читайте также:  Мощный стабилизированный блок питания с защитой

Транзисторы T1 и T2 имеют общий резистор в эмиттере, поэтому разница напряжений на базах определяет, какой транзистор открыт больше всего. Коллектор транзистора T2 управляет драйвером T3, который, в свою очередь, отвечает за напряжение питания вентилятора. Когда температура увеличивается, сопротивление PTC увеличивается, а напряжение на базе T1 падает. Тогда T2 будет открываться больше, и он откроет T3, так что вентилятор будет вращаться быстрее.

Задача делителя из резисторов R6 / R7 всегда открывать транзистор T3 до тех пор, пока минимальное напряжение на вентиляторе не упадет ниже примерно 7В. Это предотвращает остановку вентилятора при низкой температуре. Управление вентилятором в блоках питания была разработана небольшая печатная плата, которая показана на рисунке

Еще можно добавить несколько слов о различных вариантах управления и настройки. Временно подключите схему к отдельному источнику питания 12В и вентилятор, который будет использоваться со схемой управления. При включении питания вентилятор должен начать вращаться с его рабочей скоростью, а затем снизится. Эта скорость должна быть достаточно высокой, чтобы вентилятор работал должным образом, но не настолько высокой, чтобы он вращался с его заявленной скоростью.

Отрегулируйте это с помощью резистора R7. Делаем это при комнатной температуре. Сначала включите потенциометр к примеру, на 25 кОм вместо резистора R2, подключите напряжение питания и затем нагрейте датчик примерно до 35-40 C. Вентилятор должен увеличить свою скорость, пока не достигнет номинальной. Вы можете установить это с помощью потенциометра. Как только вы найдете требуемую настройку, измерьте значение потенциометра и установите резистор этого значения на печатную плату. На этом настройка заканчивается. Несколько слов по замене компонентов, транзисторы BC547 с успехом можно заменить на КТ3102, а BD140 на КТ814Г.

Источник



Автоматический регулятор оборотов кулера

Вентиляторы охлаждения сейчас стоят во многих бытовых приборах, будь то компьютеры, музыкальные центры, домашние кинотеатры. Они хорошо, справляются со своей задачей, охлаждают нагревающиеся элементы, однако издают при этом истошный, и весьма раздражающий шум. Особенно это критично в музыкальных центрах и домашних кинотеатрах, ведь шум вентилятора может помешать наслаждаться любимой музыкой. Производители часто экономят и подключают охлаждающие вентиляторы напрямую к питанию, от чего они вращаются всегда с максимальными оборотами, независимо от того, требуется охлаждение в данный момент, или нет. Решить эту проблему можно достаточно просто – встроить свой собственный автоматический регулятор оборотов кулера. Он будет следить за температурой радиатора и только при необходимости включать охлаждение, а если температура продолжит повышаться, регулятор увеличит обороты кулера вплоть до максимума. Кроме уменьшения шума такое устройство значительно увеличит срок службы самого вентилятора. Использовать его также можно, например, при создании самодельных мощных усилителей, блоков питания или других электронных устройств.

Схема

Схема крайне проста, содержит всего два транзистора, пару резисторов и термистор, но, тем не менее, замечательно работает. М1 на схеме – вентилятор, обороты которого будут регулироваться. Схема предназначена на использование стандартных кулеров на напряжение 12 вольт. VT1 – маломощный n-p-n транзистор, например, КТ3102Б, BC547B, КТ315Б. Здесь желательно использовать транзисторы с коэффициентом усиления 300 и больше. VT2 – мощный n-p-n транзистор, именно он коммутирует вентилятор. Можно применить недорогие отечественные КТ819, КТ829, опять же желательно выбрать транзистор с большим коэффициентом усиления. R1 – терморезистор (также его называют термистором), ключевое звено схемы. Он меняет своё сопротивление в зависимости от температуры. Сюда подойдёт любой NTС-терморезистор сопротивлением 10-200 кОм, например, отечественный ММТ-4. Номинал подстроечного резистора R2 зависит от выбора термистора, он должен быть в 1,5 – 2 раза больше. Этим резистором задаётся порог срабатывания включения вентилятора.

Источник